Skip to main content

Predicting Peroxisomal Targeting Signals to Elucidate the Peroxisomal Proteome of Mammals

  • Chapter
  • First Online:
Proteomics of Peroxisomes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 89))

Abstract

Peroxisomes harbor a plethora of proteins, but the peroxisomal proteome as the entirety of all peroxisomal proteins is still unknown for mammalian species. Computational algorithms can be used to predict the subcellular localization of proteins based on their amino acid sequence and this method has been amply used to forecast the intracellular fate of individual proteins. However, when applying such algorithms systematically to all proteins of an organism the prediction of its peroxisomal proteome in silico should be possible. Therefore, a reliable detection of peroxisomal targeting signals (PTS ) acting as postal codes for the intracellular distribution of the encoding protein is crucial. Peroxisomal proteins can utilize different routes to reach their destination depending on the type of PTS. Accordingly, independent prediction algorithms have been developed for each type of PTS, but only those for type-1 motifs (PTS1) have so far reached a satisfying predictive performance. This is partially due to the low number of peroxisomal proteins limiting the power of statistical analyses and partially due to specific properties of peroxisomal protein import, which render functional PTS motifs inactive in specific contexts. Moreover, the prediction of the peroxisomal proteome is limited by the high number of proteins encoded in mammalian genomes, which causes numerous false positive predictions even when using reliable algorithms and buries the few yet unidentified peroxisomal proteins. Thus, the application of prediction algorithms to identify all peroxisomal proteins is currently ineffective as stand-alone method, but can display its full potential when combined with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN:

Artificial neural network

HMM:

Hidden Markov Model

mPTS:

PTS for membrane proteins

PBD:

Peroxisome biogenesis disorder

PEX:

Peroxin

PSSM:

Position specific scoring matrix

PTS:

Peroxisomal targeting signal

SETD:

Single enzyme and transporter deficiency

SVM:

Support vector machines

References

Download references

Acknowledgements

The author is grateful for multiple support, especially to Sebastian Maurer-Stroh, and Hugo Malagon-Vina for valuable discussions and to Fabian Dorninger for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kunze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kunze, M. (2018). Predicting Peroxisomal Targeting Signals to Elucidate the Peroxisomal Proteome of Mammals. In: del Río, L., Schrader, M. (eds) Proteomics of Peroxisomes. Subcellular Biochemistry, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-13-2233-4_7

Download citation

Publish with us

Policies and ethics