Skip to main content

Weighted Clustering Coefficients Based Feature Extraction and Selection for Collaboration Relation Prediction

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2018)

Abstract

Existing methods of scientific collaboration prediction often use one-step weighted attribute of the common neighbor to construct associated feature. Such methods make no distinction between the different contributions of different neighbors and they cannot effectively deal with the redundant information between the features. Consequently, a general feature-based framework for weighted scientific network relation prediction is proposed. The framework is based on the heuristics of the Naive Bayes link prediction model. Firstly, we introduce weighted clustering coefficients to define several weighted Naive Bayes features, then use the mRMR feature selection method to deal with the information between the SE relevant features. Extensive experiments on real-world scientific network datasets demonstrate that the effectiveness of our proposed framework. Further experiments are conducted to understand the impacts of leveraging of extraction and selection of the proposed weighted features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.linkprediction.org/index.php/link/resource/data.

  2. 2.

    http://www-personal.umich.edu/~mejn/netdata/.

  3. 3.

    http://opsahl.co.uk/tnet/datasets/.

References

  1. Zhang, C., Bu, Y., Ding, Y., et al.: Understanding scientific collaboration: homophily, transitivity, and preferential attachment. J. Assoc. Inf. Sci. Technol. 69(1), 72–86 (2018)

    Article  Google Scholar 

  2. Martínez, V., Berzal, F., Cubero, J.C.: A survey of link prediction in complex networks. ACM Comput. Surv. (CSUR) 49(4), 69 (2017)

    Google Scholar 

  3. Zhou, J., Zeng, A., Fan, Y., et al.: Identifying important scholars via directed scientific collaboration networks. Scientometrics 114(3), 1327–1343 (2018)

    Article  Google Scholar 

  4. Wang, W., Yu, S., Bekele, T.M., et al.: Scientific collaboration patterns vary with scholars’ academic ages. Scientometrics 112(1), 329–343 (2017)

    Article  Google Scholar 

  5. Gupta, M., Gao, J., Han, J.: Community distribution outlier detection in heterogeneous information networks. In: Proceedings of 2013 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2013), Prague, Czech, September, pp. 557–573 (2013)

    Google Scholar 

  6. Liben Nowell, D., Kleinberg, J.: The link prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  7. Wang, P., Xu, B.W., Wu, Y.R.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)

    Google Scholar 

  8. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_9

    Chapter  Google Scholar 

  9. Murata, T., Moriyasu, S.: Link prediction of social networks based on weighted proximity measures. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, pp. 85–88. IEEE Computer Society (2007)

    Google Scholar 

  10. De Sá, H.R., Prudêncio, R.B.C: Supervised link prediction in weighted networks. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2281–2288. IEEE (2011)

    Google Scholar 

  11. Wu, J.H., Zhang, G.J., Ren, Y.Z.: Exploiting neighbors’ latent correlation for link prediction in complex network. In: 2013 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 3, pp. 1077–1082. IEEE (2013)

    Google Scholar 

  12. Lü, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80(4), 046122 (2009)

    Article  Google Scholar 

  13. Li, J., Ge, B., Yang, K.: Meta-path based heterogeneous combat network link prediction. Phys. A: Stat. Mech. Appl. 482, 507–523 (2017)

    Article  MathSciNet  Google Scholar 

  14. Fan, C., Li, D., Teng, Y., Fan, D., Ding, G.: Exploiting non-visible relationship in link prediction based on asymmetric local random walk. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 731–740. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_74

    Chapter  Google Scholar 

  15. Liu, W., Lü, L.: Link prediction based on local random walk. EPL (Europhys. Lett.) 89(5), 58007 (2010)

    Article  Google Scholar 

  16. Lü, L., Pan, L., Zhou, T.: Toward link predictability of complex networks. Proc. Natl. Acad. Sci. 112(8), 2325–2330 (2015)

    Article  MathSciNet  Google Scholar 

  17. Pech, R., Hao, D., Pan, L.: Link prediction via matrix completion. EPL (Europhy. Lett.) 117(3), 38002 (2017)

    Article  Google Scholar 

  18. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 243–252. ACM (2010)

    Google Scholar 

  19. Scellato, S., Noulas, A., Mascolo, C.: Exploiting place features in link prediction on location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1046–1054. ACM (2011)

    Google Scholar 

  20. Zhao, Y., Wu, Y.J., Levina, E.: Link prediction for partially observed networks. J. Comput. Graph. Stat. 26(3), 725–733 (2017)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Luo, P., Fan, Z.: A utility-based link prediction method in social networks. Eur. J. Oper. Res. 260(2), 693–705 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lü, L., Zhou, T.: Link prediction in weighted networks the role of weak ties. EPL (Europhys. Lett.) 89(1), 18001 (2010)

    Article  Google Scholar 

  23. Lin, Z., Yun, X., Zhu, Y.: Link prediction using benefit ranks in weighted networks. In: 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1, pp. 423–430. IEEE (2012)

    Google Scholar 

  24. Zhu, B., Xia, Y.: Link prediction in weighted networks: a weighted mutual information model. PloS one 11(2), e0148265 (2016)

    Article  Google Scholar 

  25. Barrat, A., Barthelemy, M., Pastor-Satorras, R.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101(11), 3747–3752 (2004)

    Article  Google Scholar 

  26. Kalna, G., Higham, D.J.: A clustering coefficient for weighted networks, with application to gene expression data. AI Commun. 20(4), 263–271 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Nascimento, M.C.V.: A graph clustering algorithm based on a clustering coefficient for weighted graphs. J. Braz. Comput. Soci. 17(1), 19–29 (2011)

    Article  MathSciNet  Google Scholar 

  28. Liu, Z., et al.: Link prediction in complex networks: a local naive Bayes model. EPL (Europhy. Lett.) 96(4), 48007 (2011)

    Article  Google Scholar 

  29. Li, J., Cheng, K., Wang, S., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 94 (2017)

    Article  Google Scholar 

  30. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  31. Bishop, C.M.: Pattern recognition. Mach. Learn. 128, 1–58 (2006)

    Google Scholar 

  32. Wu, J.H., Zhang, G.J., Ren, Y.Z., et al.: Weighted local Naive Bayes link prediction. J. Inf. Process. Syst. 13(4) (2017)

    Google Scholar 

Download references

Acknowledgements

Jiehua Wu is supported by Guangdong Provincial Higher outstanding young teachers Training Program (Nos. YQ2015177). This work is supported by Natural Science Foundation of Guangdong Province (No. 2017ZC0348). Guangdong Provincial major scientific research project (No. 2017GKTSCX009) and Major engineering technical and commercial services applied research project (No. GDGM2015-ZZ-C03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehua Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J. (2018). Weighted Clustering Coefficients Based Feature Extraction and Selection for Collaboration Relation Prediction. In: Zhou, Q., Gan, Y., Jing, W., Song, X., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 901. Springer, Singapore. https://doi.org/10.1007/978-981-13-2203-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2203-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2202-0

  • Online ISBN: 978-981-13-2203-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics