Skip to main content

Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data

  • Chapter
  • First Online:
Integrative Structural Biology with Hybrid Methods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1105))

Abstract

Small-angle X-ray scattering (SAXS) is an efficient experimental tool to measure the overall shape of macromolecular structures in solution. However, due to the low resolution of SAXS data, high-resolution data obtained from X-ray crystallography or NMR and computational methods such as molecular dynamics (MD) simulations are complementary to SAXS data for understanding protein functions based on their structures at atomic resolution. Because MD simulations provide a physicochemically proper structural ensemble for flexible proteins in solution and a precise description of solvent effects, the hybrid analysis of SAXS and MD simulations is a promising method to estimate reasonable solution structures and structural ensembles in solution. Here, we review typical and useful in silico methods for modeling three dimensional protein structures, calculating theoretical SAXS profiles, and analyzing ensemble structures consistent with experimental SAXS profiles. We also review two examples of the hybrid analysis, termed MD-SAXS method in which MD simulations are carried out without any knowledge of experimental SAXS data, and the experimental SAXS data are used only to assess the consistency of the solution model from MD simulations with those observed in experiments. One example is an investigation of the intrinsic dynamics of EcoO109I using the computational method to obtain a theoretical profile from the trajectory of an MD simulation. The other example is a structural investigation of the vitamin D receptor ligand-binding domain using snapshots generated by MD simulations and assessment of the snapshots by experimental SAXS data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25

    Article  Google Scholar 

  • Alva V, Nam SZ, Söding J, Lupas AN (2016) The MPI bioinformatics toolkit as an integrative platform for advanced protein sequence and structure analysis. Nuc Acid Res 44:W410–W415

    Article  CAS  Google Scholar 

  • Anami Y, Shimizu N, Ekimoto T, Egawa D, Itoh T, Ikeguchi M, Yamamoto K (2016) Apo- and antagonist-binding structures of vitamin D receptor ligand-binding domain revealed by hybrid approach combining small-angle x-ray scattering and molecular dynamics. J Med Chem 59:7888–7900

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp KA, Lin YS, Das R, Pande VS (2012) Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J Chem Theory Comput 8:1409–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernado P (2010) Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. Eur Biophys J 39:769–780

    Article  CAS  PubMed  Google Scholar 

  • Bernado P, Svergun DI (2012) Structural analysis of intrinsically disordered proteins by small-angle x-ray scattering. Mol Bio Syst 8:151–167

    CAS  Google Scholar 

  • Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle x-ray scattering. J Am Chem Soc 129:5656–5664

    Article  CAS  PubMed  Google Scholar 

  • Boldon L, Laliberte F, Liu L (2015) Review of the fundamental theories behind small angle x-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev 6:25661

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017 University of California, San Francisco

    Google Scholar 

  • Chen P, Hub JS (2015) Interpretation of solution x-ray scattering by explicit-solvent molecular dynamics. Biophys J 108:2573–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Reis MA, Apricio R, Zhang Y (2011) Improving protein template recognition by using small-angle x-ray scattering profiles. Biophys J 101:2770–2781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  • Fiser A (2010) Template-based protein structure modeling. Methods Mol Biol 673:73–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Förster F, Webb B, Krukenberg KA, Tsuruta H, Agard DA, Sali A (2008) Integration of small angle x-ray scattering data into structural modeling of proteins and their assemblies. J Mol Biol 382:1089–1106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goh BC, Hadden JA, Bernardi RC, Singharoy A, McGreevy R, Rudack T, Cassidy CK, Schulten K (2016) Computational methodologies for real-space structural refinement of large macromolecular complexes. Annu Rev Biophys 45:253–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorba C, Tama F (2010) Normal mode flexible fitting of high-resolution structures of biological molecules toward SAXS data. Bioinform Biol Insights 4:43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grishaev A, Wu J, Trewhella J, Bax A (2005) Refinement of multidomain protein structures by combination of solution small-angle x-ray scattering and NMR data. J Am Chem Soc 127:16621–16628

    Article  CAS  PubMed  Google Scholar 

  • Grishaev A, Guo L, Irving T, Bax A (2010) Improved fitting of solution x-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. J Am Chem Soc 132:15484–15486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929

    Article  CAS  PubMed  Google Scholar 

  • Hammel M (2012) Validation of macromolecular flexibility in solution by small-angle x-ray scattering (SAXS). Eur Biophys J 41:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrigan MP, Sultan MM, Hemandez CX, Husic BE, Eastman P, Schwantes CR, Beauchamp KA, McGibbon RT, Pande VS (2017) MSMBuilder: statistical models for biomolecular dynamics. Biophys J 112:10–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL, 2nd, Tsutakawa SE, Jenny FE, Jr., Classen S, Frankel KA, Hopkins RC, Yang Sj, Scott JW, Dillard BD, Adams MW, Tainer, JA (2009) Robust, high-throughput solution structural analysis by small angle X-ray scattering (SAXS). Nat Methods 6(8):606–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques DA, Guss JM, Svergun DI, Trewhella J (2012) Publication guidelines for structural modeling of small-angle scattering data from biomolecules in solution. Acta Cryst D 68:620–626

    Article  CAS  Google Scholar 

  • Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nuc Acid Res 37:D387–D392

    Article  CAS  Google Scholar 

  • Kikhney AG, Svergun DI (2015) A practical guide to small angle x-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589:2570–2577

    Article  CAS  PubMed  Google Scholar 

  • Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nuc Acid Res 32:W526–W531

    Article  CAS  Google Scholar 

  • Kimanius D, Pettersson I, Schluchebier G, Lindahl E, Andersson M (2015) SAXS-guided metadynamics. J Chem Theory Comput 11:3491–3498

    Article  CAS  PubMed  Google Scholar 

  • Knight CJ, Hub JS (2015) WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics. Nuc Acid Res 43:W225–W230

    Article  CAS  Google Scholar 

  • Kobayashi C, Jung J, Matunaga Y, Mori T, Ando T, Tamura K, Kamiya M, Sugita Y (2017) GENESIS 1.1: a hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J Comput Chem 38:2193–2206

    Article  CAS  PubMed  Google Scholar 

  • Köfinger J, Hummer G (2013) Atomic-resolution structural information from scattering experiments on macromolecules in solution. Phys Rev E 87:052712

    Article  CAS  Google Scholar 

  • Kojima M, Timchenko AA, Higo J, Ito K, Kihara H, Takahashi K (2004) Structural refinement by restrained molecular-dynamics algorithm with small-angle x-ray scattering constraints for a biomolecule. J Appl Cryst 37:103–109

    Article  CAS  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS – a windows-pc based system for small-angle scattering data analysis. J Appl Cryst 36:1277–1282

    Article  CAS  Google Scholar 

  • Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane TJ, Shukla D, Beauchamp KA, Pande VS (2013) To milliseconds and beyond: challenges in the simulation of protein folding. Curr Opin Struct Biol 23:58–65

    Article  CAS  PubMed  Google Scholar 

  • Lau AY, Roux B (2007) The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain. Structure 15:1203–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) Systematic validation of protein force fields against experimental data. PLoS One 7:e32131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Morris RJ, Hexemer A, Grandison S, Zwart PH (2012) Computation of small-angle scattering profiles with three-dimensional Zernike polynomials. Acta Cryst A68:278–285

    Article  CAS  Google Scholar 

  • Marchi M (2016) A first principle particle mesh method for solution SAXS of large bio-molecular systems. J Chem Phys 145:045101

    Article  PubMed  CAS  Google Scholar 

  • Moras D, Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 10:384–391

    Article  CAS  PubMed  Google Scholar 

  • Morimoto Y, Nakagawa T, Kojima M (2013) Small-angle x-ray scattering constraints and local geometry like secondary structures can construct a coarse-grained protein model at amino acid residue resolution. Biochem Biophys Res Commun 431:65–69

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Pabit SA, Meisburger SP, Pollack L, Case DA (2014) Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids. J Chem Phys 141:22D508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohmura I, Morimoto G, Ohno Y, Hasegawa A, Taiji M (2014) MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations. Philos Trans A Math Phys Eng Sci 372:20130387

    Article  PubMed  PubMed Central  Google Scholar 

  • Oroguchi T, Ikeguchi M (2011) Effects of ionic strength on SAXS data for proteins revealed by molecular dynamics simulations. J Chem Phys 134:025102-1-14

    Article  PubMed  CAS  Google Scholar 

  • Oroguchi T, Ikeguchi M (2012) MD-SAXS method with nonspherical boundaries. Chem Phys Lett 541:117–121

    Article  CAS  Google Scholar 

  • Oroguchi T, Hashimoto H, Shimizu T, Sato M, Ikeguchi M (2009) Intrinsic dynamics of restriction endonuclease EcoO109I studied by molecular dynamics simulations and x-ray scattering data analysis. Biophys J 96:2808–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Bardhan JP, Roux B, Makowski L (2009) Simulated x-ray scattering of protein solutions using explicit-solvent models. J Chem Phys 130:134114-1-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pelikan M, Hura GL, Hammel M (2009) Structure and flexibility within proteins as identified through small angle x-ray scattering. Gen Physiol Biophys 28:174–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petoukhov MV, Svergun DI (2005) Global rigid body modelling of macromolecular complexes against small-angle scattering data. Biophys J 89:1237–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HDT, Konarev PV, Svergun DI (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Cryst 45:342–350

    Article  CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111: 4553–4559

    Article  CAS  PubMed  Google Scholar 

  • Poitevin F, Orland H, Doniach S, Koehl P, Delarue M (2011) AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nuc Acid Res 39:W184–W189

    Article  CAS  Google Scholar 

  • Pons C, D’Abramo M, Svergan DI, Orozco M, Bernado P, Fernandez-Recio J (2010) Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data. J Mol Biol 403:217–230

    Article  CAS  PubMed  Google Scholar 

  • Rambo RP, Tainer JA (2013) Super-resolution in solution x-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42:415–441

    Article  CAS  PubMed  Google Scholar 

  • Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, de Groot BL, Grumbmüller H (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11:5513–5524

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar KM, Huang W, Yang S (2013) Fast-SAXS-pro: a unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes. J Chem Phys 138:024112-1-7

    Google Scholar 

  • Rochel N, Tocchini-Valentini G, Egea PF, Juntunen K, Garnier JM, Vihko P, Moras D (2001) Functional and structural characterization of the insertion region in the ligand binding domain of vitamin D nuclear receptor. Eur J Biochem 268:971–979

    Article  CAS  PubMed  Google Scholar 

  • Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mely Y, Svergun DI, Moras D (2011) Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 18:564–570

    Article  CAS  PubMed  Google Scholar 

  • Rozycki B, Kim YC, Hummer G (2011) SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Saunders MG, Voth GA (2013) Coarse-graining methods for computational biology. Annu Rev Biophys 42:73–93

    Article  CAS  PubMed  Google Scholar 

  • Scherer MK, Trendelkamp-Schroer B, Paul F, Perez-Hernandez G, Hoffmann M, Plattner N, Wehmeyer C, Prinz JH, Noe F (2015) PyEMMA2: a software package for estimation, validation, and analysis of Markov models. J Chem Theory Comput 11:5525–5542

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhobny D, Hammel M, Sali A (2011) Macromolecular docking restrained by a small angle x-ray scattering profile. J Struct Biol 173:461–471

    Article  CAS  Google Scholar 

  • Schneidman-Duhovny D, Kim SJ, Sali A (2012) Integrative structural modeling with small angle x-ray scattering profiles. BMC Struct Biol 12:7

    Article  CAS  Google Scholar 

  • Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2013) Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J 105:962–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun Acm 51:91–97

    Article  Google Scholar 

  • Stovgaard K, Andreetta C, Ferkinghoff-Borg J, Hamelryck T (2010) Calculation of accurate small angle x-ray scattering curves from coarse-grained protein models. BMC Bioinform 11:429

    Article  CAS  Google Scholar 

  • Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 77:2879–2886

    Article  Google Scholar 

  • Svergun DI, Koch MJH (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66:1735–1782

    Article  CAS  Google Scholar 

  • Svergun DI, Barberato C, Koch MJH (1995) CRYSOL – a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst 28:768–773

    Article  CAS  Google Scholar 

  • Svergun DI, Petoukhov MV, Koch MHJ (2001) Determination of domain structure of proteins from x-ray solution scattering. Biophys J 80:2946–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tria G, Mertens HD, Kachala M, Svefun DI (2015) Advanced ensemble modeling of flexible macromolecules using x-ray solution scattering. IUCrJ 26:207–217

    Article  CAS  Google Scholar 

  • Venditti V, Egner TK, Clore GM (2016) Hybrid approaches to structural characterization of conformational ensembles of complex macromolecular systems combining NMR residual dipolar couplings and solution x-ray scattering. Chem Rev 116:6305–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestergaard B (2016) Analysis of biostructural changes, dynamics, and interactions – small-angle x-ray scattering to the rescue. Arch Biochem Biohys 602:69–79

    Article  CAS  Google Scholar 

  • Virtanen JJ, Makowski L, Sosnick TR, Freed KF (2011) Modeling the hydration layer around proteins: applications to small- and wide-angle x-ray scattering. Biophys J 101:2061–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinan E, Vanden-Eijnden E (2010) Transition-path theory and path-finding algorithms for the study of rare events. Annu Rev Phys Chem 61:391–420

    Article  CAS  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Park S, Makowski L, Roux B (2009) A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Biophys J 96:4449–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Blachowicz L, Makowski L, Roux B (2010) Multidomain assembled states of Hck tyrosine kinase in solution. Proc Natl Acad Sci U S A 107:15757–15762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, Goddard TD, Meng EC, Sali A, Ferrin TE (2012) UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol 179:269–278

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Tekpinar M (2011) Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell. Biophys J 101:2981–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman DM, Chong LT (2017) Weighted ensemble simulation: review of methodology, applications, and software. Annu Rev Biophys 46:43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Innovative Drug Discovery Infrastructure through Functional Control of Biomolecular Systems, Priority Issue 1 in Post-K Supercomputer Development from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to M.I. (Project ID: hp150269, hp160223, hp170255, and hp180191); by Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS) (Project ID: JP17am0101109) from Japan Agency for Medical Research and Development (AMED) to M.I.; and by RIKEN Dynamic Structural Biology Project to M.I. We further thank collaborators, Dr. Tomotaka Oroguchi (Keio Univ.), Prof. Hiroshi Hashimoto (Univ. of Shizuoka), Prof. Toshiyuki Shimizu (Tokyo Univ.), Prof. Mamoru Sato (Yokohama City Univ.), Dr. Yasuaki Anami (Univ. of Texas), Dr. Nobutaka Shimizu (KEK), Dr. Daichi Egawa (Showa Pharmaceutical Univ.), Dr. Toshimasa Itoh (Showa Pharmaceutical Univ.), and Prof. Keiko Yamamoto (Showa Pharmaceutical Univ.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsunori Ikeguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ekimoto, T., Ikeguchi, M. (2018). Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data. In: Nakamura, H., Kleywegt, G., Burley, S., Markley, J. (eds) Integrative Structural Biology with Hybrid Methods. Advances in Experimental Medicine and Biology, vol 1105. Springer, Singapore. https://doi.org/10.1007/978-981-13-2200-6_15

Download citation

Publish with us

Policies and ethics