Advertisement

The Hokkaido Study on Environment and Children’s Health

Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

The Hokkaido Study on Environment and Children’s Health is an ongoing study of two birth cohorts: the Sapporo cohort and the Hokkaido cohort. Our primary goals are (1) to examine the possible effects of low-level environmental chemical exposures, (2) to follow childhood development through a longitudinal observation study, (3) to identify a high-risk group classified by genetic susceptibility, and (4) to identify any additive effects. Maternal and cord blood were collected for an environmental chemical exposure assessment of dioxins, polychlorinated biphenyls, organochlorine pesticides, perfluoroalkyl substances, phthalates, bisphenol A, and methylmercury. Assessments of health outcomes regarding birth size, neurodevelopment, asthma, allergies and infectious diseases, and hormone levels were conducted, along with observation of the children’s growth. Both genetic and epigenetic analyses were also conducted to examine the effects of environmental chemical exposures on a genetically susceptible population and on DNA methylation. Our study suggests that prenatal environmental chemical exposure affects birth size, hormone balance, neurodevelopment, and immune function, even at relatively low levels. Furthermore, specific genotypes may modify the effects of chemical exposure on health outcomes. Epigenetics, such as DNA methylation, may explain in part the mechanism of action.

Keywords

Birth cohort Health effects Children Early life exposure Environmental chemicals Genetic susceptibility Epigenetics 

Abbreviations

ADHD-RS

Attention deficit hyperactivity disorder-rating scale

AHR

Aromatic hydrocarbon receptor

ASQ

Autism screening questionnaire

ATS-DLD

American Thoracic Society-Division of Lung Disease classifications

BiCCA

Birth Cohort Consortium of Asia

BMI

Body mass index

BPA

Bisphenol A

BSID-II

The Bayley Scales of Infant Development-Second Edition

CBCL

Child behavior checklist

CI

Confidence interval

Conners 3P

Conner’s third Edition for Parents

CYP

Cytochrome P450

DCDQ

Developmental Coordination Disorder Questionnaire

DDST

The Denver Developmental Screening Test

DEHP

Di(2-ethylhexyl) phthalate

DHEA

Dehydroepiandrostenedione

DL-PCBs

Dioxin-like polychlorinated biphenyls

DOHaD

Developmental Origins of Health and Disease

EES

The Evaluation of Environmental Stimulation

FT4

Free thyroxine

FTII

The Fagan Test of Infant Intelligence

GC/MS

Gas chromatography/mass spectrometry

GSTM1

Glutathione S-transferase mu 1

IGF2

Insulin-like growth factor 2

ISAAC

International Study of Asthma and Allergies in Childhood

J-PSAI

Japanese Pre-school Activities Inventory

K-ABC

The Kaufman Assessment Battery for Children

KIDS

Kinder Infant Development Scale

KWCST

Wisconsin Card Sorting Test (Keio version)

LBW

Low birth weight

LC-MS/MS

Liquid chromatography-tandem mass spectrometry

LINE1

Long interspersed element 1

M-CHAT

Modified Checklist for Autism Toddlers

MDI

Mental Development Index

Me-Hg

Methylmercury

MEHP

Mono(2-ethylhexyl) phthalate

MTHFR

5,10-methylenetetrahydrofolate reductase

NQO1

Reduced nicotinamide adenine dinucleotide phosphate (NADPH):quinone oxidase 1

PCDD/PCDF

Polychlorinated dibenzo-p-dioxin/polychlorinated dibenzofuran

PFASs

Perfluoroalkyl substances

PFOA

Perfluorooctanoate

PFOS

Perfluorooctanesulfonic acid

PI

Ponderal index

PRL

Prolactin

SCQ

Social Communication Questionnaire

SDQ

Strengths and Difficulties Questionnaire

SES

Social economic status

SGA

Small for gestational age

SNPs

Single nucleotide polymorphisms

T/E2

Testosterone/estradiol ratio

TEQ

Toxicity equivalency quantity

TSH

Thyroid-stimulating hormone

WAIS-R

The Wechsler Adult Intelligence Scale-Revised

WISC

The Wechsler Intelligence Scale for Children-Third Edition

XRCC1

X-ray cross-complementing gene 1

Notes

Acknowledgments

We would like to express our appreciation to all the study participants and all the personnel in hospitals and clinics that collaborated with the Hokkaido study on environment and children’s health. The Hokkaido study is supported by Grant-in-Aid for Scientific Research from the Japanese Ministry of Health, Labour and Welfare; Japan Society for the Promotion of Science; the Ministry of Education, Culture, Sports, Science and Technology; and Environment Research and Technology Development Fund.

References

  1. 1.
    Colborn T, Dumanoski D, Myers J. Our stolen future: are we threating our fertility, intelligence, and survival? A scientific detective story. New York: Plume; 1997.Google Scholar
  2. 2.
    Meeker JD. Exposure to environmental endocrine disruptors and child development. Arch Pediatr Adolesc Med. 2012;166(6):E1–7.  https://doi.org/10.1001/archpediatrics.2012.241.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schug TT, Janesick A, Blumberg B, et al. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011;127(3–5):204–15.  https://doi.org/10.1016/j.jsbmb.2011.08.007.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wigle DT, Arbuckle TE, Turner MC, et al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev. 2008;11(5–6):373–517.  https://doi.org/10.1080/10937400801921320.CrossRefPubMedGoogle Scholar
  5. 5.
    Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81.CrossRefGoogle Scholar
  6. 6.
    Gluckman P, Hanson M. Early life origins of human health and disease. New York: Cambridge University Press; 2006.CrossRefGoogle Scholar
  7. 7.
    Newman J, Ross M. Early life origins of human health and disease. Basel: Karger; 2009.Google Scholar
  8. 8.
    Kishi R, Kobayashi S, Ikeno T, et al. Ten years of progress in the Hokkaido birth cohort study on environment and children’s health: cohort profile—updated 2013. Environ Health Prev Med. 2013;18(6):429–50.  https://doi.org/10.1007/s12199-013-0357-3.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kishi R, Sasaki S, Yoshioka E, et al. Cohort profile: the Hokkaido Study on Environment and Children’s Health in Japan. Int J Epidemiol. 2011;40(3):611–8.  https://doi.org/10.1093/ije/dyq071.CrossRefPubMedGoogle Scholar
  10. 10.
    Kishi R, Araki A, Minatoya M, et al. The Hokkaido Birth Cohort Study on Environment and Children’s Health: cohort profile—updated 2017. Environ Health Prev Med. 2017;22:46.  https://doi.org/10.1186/s12199-017-0654-3.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee (1998). Lancet 351 (9111):1225–1232.Google Scholar
  12. 12.
    Nishima S, Chisaka H, Fujiwara T, et al. Surveys on the prevalence of pediatric bronchial asthma in Japan: a comparison between the 1982, 1992, and 2002 surveys conducted in the same region using the same methodology. Allergol Int. 2009;58(1):37–53.  https://doi.org/10.2332/allergolint.O-08-550.CrossRefPubMedGoogle Scholar
  13. 13.
    Todaka T, Hirakawa H, Kajiwara J, et al. Concentrations of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in blood collected from 195 pregnant women in Sapporo City, Japan. Chemosphere. 2007;69(8):1228–37.  https://doi.org/10.1016/j.chemosphere.2007.05.083.CrossRefPubMedGoogle Scholar
  14. 14.
    Todaka T, Hirakawa H, Kajiwara J, et al. Concentrations of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in blood and breast milk collected from 60 mothers in Sapporo City, Japan. Chemosphere. 2008;72(8):1152–8.  https://doi.org/10.1016/j.chemosphere.2008.03.050.CrossRefPubMedGoogle Scholar
  15. 15.
    Todaka T, Hori T, Hirakawa H, et al. Congener-specific analysis of non-dioxin-like polychlorinated biphenyls in blood collected from 195 pregnant women in Sapporo City, Japan. Chemosphere. 2008;73(6):923–31.  https://doi.org/10.1016/j.chemosphere.2008.06.071.CrossRefPubMedGoogle Scholar
  16. 16.
    Van den Berg M, Birnbaum LS, Denison M, et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93(2):223–41.  https://doi.org/10.1093/toxsci/kfl055.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Inoue K, Okada F, Ito R, et al. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect. 2004;112(11):1204–7.CrossRefGoogle Scholar
  18. 18.
    Kanazawa A, Miyasita C, Okada E, et al. Blood persistent organochlorine pesticides in pregnant women in relation to physical and environmental variables in The Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2012;426:73–82.  https://doi.org/10.1016/j.scitotenv.2012.02.073.CrossRefPubMedGoogle Scholar
  19. 19.
    Araki A, Mitsui T, Miyashita C, et al. Association between maternal exposure to di(2-ethylhexyl) phthalate and reproductive hormone levels in fetal blood: the Hokkaido Study on Environment and Children’s Health. PLoS One. 2014;9(10):e109039.  https://doi.org/10.1371/journal.pone.0109039.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jia X, Harada Y, Tagawa M, et al. Prenatal maternal blood triglyceride and fatty acid levels in relation to exposure to di(2-ethylhexyl)phthalate: a cross-sectional study. Environ Health Prev Med. 2015;20(3):168–78.  https://doi.org/10.1007/s12199-014-0440-4.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamamoto J, Minatoya M, Sasaki S, et al. Quantifying bisphenol A in maternal and cord whole blood using isotope dilution liquid chromatography/tandem mass spectrometry and maternal characteristics associated with bisphenol A. Chemosphere. 2016;164:25–31.  https://doi.org/10.1016/j.chemosphere.2016.08.001.CrossRefPubMedGoogle Scholar
  22. 22.
    Miyashita C, Sasaki S, Saijo Y, et al. Demographic, behavioral, dietary, and socioeconomic characteristics related to persistent organic pollutants and mercury levels in pregnant women in Japan. Chemosphere. 2015;133:13–21.  https://doi.org/10.1016/j.chemosphere.2015.02.062.CrossRefPubMedGoogle Scholar
  23. 23.
    Kato S, Itoh S, Yuasa M, et al. Association of perfluorinated chemical exposure in utero with maternal and infant thyroid hormone levels in the Sapporo cohort of Hokkaido Study on the Environment and Children's Health. Environ Health Prev Med. 2016;21(5):334–44.  https://doi.org/10.1007/s12199-016-0534-2.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kishi R, Nakajima T, Goudarzi H, et al. The association of prenatal exposure to perfluorinated chemicals with maternal essential and long-chain polyunsaturated fatty acids during pregnancy and the birth weight of their offspring: the Hokkaido Study. Environ Health Perspect. 2015;123(10):1038–45.  https://doi.org/10.1289/ehp.1408834.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Okada E, Sasaki S, Saijo Y, et al. Prenatal exposure to perfluorinated chemicals and relationship with allergies and infectious diseases in infants. Environ Res. 2012;112:118–25.  https://doi.org/10.1016/j.envres.2011.10.003.CrossRefPubMedGoogle Scholar
  26. 26.
    Minatoya M, Itoh S, Miyashita C, et al. Association of prenatal exposure to perfluoroalkyl substances with cord blood adipokines and birth size: the Hokkaido Study on environment and children’s health. Environ Res. 2017;156:175–82.  https://doi.org/10.1016/j.envres.2017.03.033.CrossRefPubMedGoogle Scholar
  27. 27.
    Minatoya M, Araki A, Miyashita C, et al. Prenatal di-2-ethylhexyl phthalate exposure and cord blood adipokine levels and birth size: the Hokkaido study on environment and children’s health. Sci Total Environ. 2017;579:606–11.  https://doi.org/10.1016/j.scitotenv.2016.11.051.CrossRefPubMedGoogle Scholar
  28. 28.
    Goudarzi H, Araki A, Itoh S, Sasaki S, Miyashita C, Mitsui T, Nakazawa H, Nonomura K, Kishi R. The association of prenatal exposure to perfluorinated chemicals with glucocorticoid and androgenic hormones in cord blood samples: the Hokkaido Study. Environ Health Perspect. 2017;125(1):111–8.  https://doi.org/10.1289/EHP142.CrossRefPubMedGoogle Scholar
  29. 29.
    Itoh S, Araki A, Mitsui T, et al. Association of perfluoroalkyl substances exposure in utero with reproductive hormone levels in cord blood in the Hokkaido Study on Environment and Children’s Health. Environ Int. 2016;94:51–9.  https://doi.org/10.1016/j.envint.2016.05.011.CrossRefPubMedGoogle Scholar
  30. 30.
    Okada E, Kashino I, Matsuura H, et al. Temporal trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan, 2003-2011. Environ Int. 2013;60:89–96.  https://doi.org/10.1016/j.envint.2013.07.013.CrossRefPubMedGoogle Scholar
  31. 31.
    Yila TA, Sasaki S, Miyashita C, et al. Effects of maternal 5,10-methylenetetrahydrofolate reductase C677T and A1298C Polymorphisms and tobacco smoking on infant birth weight in a Japanese population. J Epidemiol. 2012;22(2):91–102.CrossRefGoogle Scholar
  32. 32.
    Yamada T, Morikawa M, Yamada T, et al. First-trimester serum folate levels and subsequent risk of abortion and preterm birth among Japanese women with singleton pregnancies. Arch Gynecol Obstet. 2013;287(1):9–14.  https://doi.org/10.1007/s00404-012-2501-5.CrossRefPubMedGoogle Scholar
  33. 33.
    Sasaki S, Kondo T, Sata F, et al. Maternal smoking during pregnancy and genetic polymorphisms in the Ah receptor, CYP1A1 and GSTM1 affect infant birth size in Japanese subjects. Mol Hum Reprod. 2006;12(2):77–83.  https://doi.org/10.1093/molehr/gal013.CrossRefPubMedGoogle Scholar
  34. 34.
    Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One. 2008;3(2):e1662.  https://doi.org/10.1371/journal.pone.0001662.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang B, Tan HW, Fang W, et al. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm. Hortic Res. 2015;2:14065.  https://doi.org/10.1038/hortres.2014.65.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang J, Lin M, Crenshaw A, et al. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays. BMC Genomics. 2009;10:561.  https://doi.org/10.1186/1471-2164-10-561.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kobayashi S, Azumi K, Goudarzi H, et al. Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: the Hokkaido Study. J Expo Sci Environ Epidemiol. 2016;  https://doi.org/10.1038/jes.2016.50.
  38. 38.
    Bibikova M, Barnes B, Tsan C, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95.  https://doi.org/10.1016/j.ygeno.2011.07.007.CrossRefPubMedGoogle Scholar
  39. 39.
    Sandoval J, Heyn H, Moran S, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6(6):692–702.CrossRefGoogle Scholar
  40. 40.
    Itabashi K, Fujimura M, Kusuda S, et al. The introduction of new standard values of birth weight according to gestational age (in Japanese). J Jpn Pediatr Soc. 2010;114:1271–93.Google Scholar
  41. 41.
    Miyashita C, Sasaki S, Ikeno T, et al. Effects of in utero exposure to polychlorinated biphenyls, methylmercury, and polyunsaturated fatty acids on birth size. Sci Total Environ. 2015;533:256–65.  https://doi.org/10.1016/j.scitotenv.2015.06.108.CrossRefPubMedGoogle Scholar
  42. 42.
    Minatoya M, Nakajima S, Sasaki S, et al. Effects of prenatal phthalate exposure on thyroid hormone levels, mental and psychomotor development of infants: the Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2016;565:1037–43.  https://doi.org/10.1016/j.scitotenv.2016.05.098.CrossRefPubMedGoogle Scholar
  43. 43.
    Minatoya M, Sasaki S, Araki A, et al. Cord blood bisphenol A levels and reproductive and thyroid hormone levels of neonates: the Hokkaido Study on Environment and Children’s Health. Epidemiology. 2017;28 Suppl 1:S3–9.  https://doi.org/10.1097/EDE.0000000000000716.CrossRefPubMedGoogle Scholar
  44. 44.
    Braun T, Challis JR, Newnham JP, et al. Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev. 2013;34(6):885–916.  https://doi.org/10.1210/er.2013-1012.CrossRefPubMedGoogle Scholar
  45. 45.
    Reynolds RM. Corticosteroid-mediated programming and the pathogenesis of obesity and diabetes. J Steroid Biochem Mol Biol. 2010;122(1–3):3–9.  https://doi.org/10.1016/j.jsbmb.2010.01.009.CrossRefPubMedGoogle Scholar
  46. 46.
    Labrie F, Luu-The V, Labrie C, et al. DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 2001;22(3):185–212.  https://doi.org/10.1006/frne.2001.0216.CrossRefPubMedGoogle Scholar
  47. 47.
    Araki A, Mitsui T, Goudarzi H, et al. Prenatal di(2-ethylhexyl) phthalate exposure and disruption of adrenal androgens and glucocorticoids levels in cord blood: the Hokkaido Study. Sci Total Environ. 2016;581-582:297–304.  https://doi.org/10.1016/j.scitotenv.2016.12.124.CrossRefPubMedGoogle Scholar
  48. 48.
    Goudarzi H, Nakajima S, Ikeno T, et al. Prenatal exposure to perfluorinated chemicals and neurodevelopment in early infancy: the Hokkaido Study. Sci Total Environ. 2016;541:1002–10.  https://doi.org/10.1016/j.scitotenv.2015.10.017.CrossRefPubMedGoogle Scholar
  49. 49.
    Nakajima S, Saijo Y, Kato S, et al. Effects of prenatal exposure to polychlorinated biphenyls and dioxins on mental and motor development in Japanese children at 6 months of age. Environ Health Perspect. 2006;114(5):773–8.CrossRefGoogle Scholar
  50. 50.
    Goodman R. The Strengths and Difficulties Questionnaire: a research note. J Child Psychol Psychiatry. 1997;38(5):581–6.CrossRefGoogle Scholar
  51. 51.
    Goodman R. Psychometric properties of the strengths and difficulties questionnaire. J Am Acad Child Adolesc Psychiatry. 2001;40(11):1337–45.  https://doi.org/10.1097/00004583-200111000-00015.CrossRefPubMedGoogle Scholar
  52. 52.
    Minatoya M, Itoh S, Araki A, et al. Associated factors of behavioural problems in children at preschool age: the Hokkaido study on environment and children's health. Child Care Health Dev. 2017;43(3):385–92.  https://doi.org/10.1111/cch.12424.CrossRefPubMedGoogle Scholar
  53. 53.
    Miyashita C, Sasaki S, Saijo Y, et al. Effects of prenatal exposure to dioxin-like compounds on allergies and infections during infancy. Environ Res. 2011;111(4):551–8.  https://doi.org/10.1016/j.envres.2011.01.021.CrossRefPubMedGoogle Scholar
  54. 54.
    Goudarzi H, Miyashita C, Okada E, et al. Effects of prenatal exposure to perfluoroalkyl acids on prevalence of allergic diseases among 4-year-old children. Environ Int. 2016;94:124–32.  https://doi.org/10.1016/j.envint.2016.05.020.CrossRefPubMedGoogle Scholar
  55. 55.
    Okada E, Sasaki S, Kashino I, et al. Prenatal exposure to perfluoroalkyl acids and allergic diseases in early childhood. Environ Int. 2014;65:127–34.  https://doi.org/10.1016/j.envint.2014.01.007.CrossRefPubMedGoogle Scholar
  56. 56.
    Goudarzi H, Miyashita C, Okada E, et al. Prenatal exposure to perfluoroalkyl acids and prevalence of infectious diseases up to 4 years of age. Environ Int. 2017;104:132–8.  https://doi.org/10.1016/j.envint.2017.01.024.CrossRefPubMedGoogle Scholar
  57. 57.
    Sasaki S, Sata F, Katoh S, et al. Adverse birth outcomes associated with maternal smoking and polymorphisms in the N-Nitrosamine-metabolizing enzyme genes NQO1 and CYP2E1. Am J Epidemiol. 2008;167(6):719–26.  https://doi.org/10.1093/aje/kwm360.CrossRefPubMedGoogle Scholar
  58. 58.
    Kobayashi S, Sata F, Sasaki S, et al. Combined effects of AHR, CYP1A1, and XRCC1 genotypes and prenatal maternal smoking on infant birth size: biomarker assessment in the Hokkaido Study. Reprod Toxicol. 2016;65:295–306.  https://doi.org/10.1016/j.reprotox.2016.08.020.CrossRefPubMedGoogle Scholar
  59. 59.
    Kobayashi S, Sata F, Sasaki S, et al. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women. Toxicol Lett. 2013;219(3):269–78.  https://doi.org/10.1016/j.toxlet.2013.03.013.CrossRefPubMedGoogle Scholar
  60. 60.
    Kobayashi S, Sata F, Miyashita C, et al. Dioxin-metabolizing genes in relation to effects of prenatal dioxin levels and reduced birth size: the Hokkaido study. Reprod Toxicol. 2017;67:111–6.  https://doi.org/10.1016/j.reprotox.2016.12.002.CrossRefPubMedGoogle Scholar
  61. 61.
    Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York, NY: Guilford Press; 2013.Google Scholar
  62. 62.
    Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods. 2008;40(3):879–91.CrossRefGoogle Scholar
  63. 63.
    Fairchild AJ, Mackinnon DP, Taborga MP, et al. R2 effect-size measures for mediation analysis. Behav Res Methods. 2009;41(2):486–98.  https://doi.org/10.3758/BRM.41.2.486.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kishi R, Zhang J, Ha E, et al. Birth Cohort Consortium of Asia (BiCCA) – current and future perspectives. Epidemiology. 2017;28 Suppl 1:S19–34.  https://doi.org/10.1097/EDE.0000000000000698.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Hokkaido University Center for Environmental and Health SciencesWHO Collaborating Centre for Environmental Health and Prevention of Chemical HazardsSapporoJapan

Personalised recommendations