Skip to main content

Maternal Exposure to Environmental Chemicals and Health Outcomes Later in Life

  • Chapter
  • First Online:
Pre-emptive Medicine: Public Health Aspects of Developmental Origins of Health and Disease

Abstract

The developmental origins of health and disease (DOHaD) paradigm, which was first presented as the Barker hypothesis, has been widely accepted in a variety of medical disciplines, ranging from public health to internal medicine, nutritional sciences, gynecology, pediatrics, and environmental health. Prenatal exposure to industrial chemicals at low doses has been shown to have a critical window during gestation and induce abnormalities later in life following a definite latent period. Such exposure scenarios can now be considered as a critical component that may act as initiating or modifying factors for health and disease status later in life and support the DOHaD paradigm. Exogenous chemicals include methylmercury, pesticides (organophosphates and neonicotinoids), tobacco, polychlorinated biphenyls and dioxins, and diethylstilbestrol, and their late-onset health outcomes include cancers and neurocognitive behavioral abnormalities. In order to understand the DOHaD paradigm, attention needs to be drawn to chemical exposure during the early life stages. Subtle alterations in developmental neurotoxicity that can only be detected by cutting-edge technology using a hypothesis-driven approach are discussed in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADI:

Allowable daily intake

AhR:

Aryl hydrocarbon receptor

AVPV:

Anteroventral periventricular nucleus

BPA:

Bisphenol A

CPF:

Chlorpyrifos

DES:

Diethylstilbestrol

DL:

Dioxin-like

DOHaD:

Developmental origins of health and disease

EDCs:

Endocrine-disrupting chemicals

FOAD:

Fetal origins of adult disease

JECFA:

Joint FAO/WHO Expert Committee on Food Additives

MPOA:

Medial preoptic area

nAChR:

Nicotinic acetylcholine receptor

PCB:

Polychlorinated biphenyl

PCDD:

Polychlorinated dibenzo-p-dioxin

PCDF:

Polychlorinated dibenzofuran

TCDD:

2,3,7,8-tetrachlorodibenzo-p-dioxin

References

  1. Inadera H. Developmental origins of obesity and type 2 diabetes: molecular aspects and role of chemicals. Environ Health Prev Med. 2013;18(3):185–97. https://doi.org/10.1007/s12199-013-0328-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73. https://doi.org/10.1056/NEJMra0708473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Godfrey KM, Barker DJ. Fetal programming and adult health. Public Health Nutr. 2001;4(2B):611–24.

    Article  CAS  Google Scholar 

  4. Gillman MW, Barker D, Bier D, Cagampang F, Challis J, Fall C, et al. Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD). Pediatr Res. 2007;61(5 Pt 1):625–9. https://doi.org/10.1203/pdr.0b013e3180459fcd.

    Article  PubMed  Google Scholar 

  5. Colborn T. Pesticides—how research has succeeded and failed to translate science into policy: endocrinological effects on wildlife. Environ Health Perspect. 1995;103(Suppl 6):81–5.

    Article  Google Scholar 

  6. Colborn T, Dumanoski D, Myers JP. Our stolen future: are we threatening our fertility, intelligence, and survival?—a scientific detective story. New York: The Spieler Agency; 1996.

    Google Scholar 

  7. International Programme on Chemical Safety. Global assessment of the state-of-the-science of endocrine disruptors. Geneva: World Health Organisation; 2002.

    Google Scholar 

  8. Barker DJ, Eriksson JG, Forsen T, Osmond C. Infant growth and income 50 years later. Arch Dis Child. 2005;90(3):272–3. https://doi.org/10.1136/adc.2003.033464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grun F, Blumberg B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev Endocr Metab Disord. 2007;8(2):161–71. https://doi.org/10.1007/s11154-007-9049-x.

    Article  PubMed  Google Scholar 

  10. Bezek S, Ujhazy E, Mach M, Navarova J, Dubovicky M. Developmental origin of chronic diseases: toxicological implication. Interdiscip Toxicol. 2008;1(1):29–31. https://doi.org/10.2478/v10102-010-0029-8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grandjean P, Bellinger D, Bergman A, Cordier S, Davey-Smith G, Eskenazi B, et al. The faroes statement: human health effects of developmental exposure to chemicals in our environment. Basic Clin Pharmacol Toxicol. 2008;102(2):73–5. https://doi.org/10.1111/j.1742-7843.2007.00114.x.

    Article  CAS  PubMed  Google Scholar 

  12. Rosenfeld CS. Effects of maternal diet and exposure to bisphenol A on sexually dimorphic responses in conceptuses and offspring. Reprod Domest Anim. 2012;47(Suppl 4):23–30. https://doi.org/10.1111/j.1439-0531.2012.02051.x.

    Article  PubMed  Google Scholar 

  13. Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, Gray KA. Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol. 2017;68:34–48. https://doi.org/10.1016/j.reprotox.2016.11.011.

    Article  CAS  PubMed  Google Scholar 

  14. Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995;25(1):1–24. https://doi.org/10.3109/10408449509089885.

    Article  CAS  PubMed  Google Scholar 

  15. Newbold RR. Prenatal exposure to diethylstilbestrol and long-term impact on the breast and reproductive tract in humans and mice. J Dev Orig Health Dis. 2012;3(2):73–82. https://doi.org/10.1017/S2040174411000754.

    Article  CAS  PubMed  Google Scholar 

  16. National Cancer Institute. Diethylstilbestrol (DES) and Cancer. https://www.cancer.gov/about-cancer/causes-prevention/risk/hormones/des-fact-sheet.

  17. Larson PS, Ungarelli RA, de Las Morenas A, Cupples LA, Rowlings K, Palmer JR, et al. In utero exposure to diethylstilbestrol (DES) does not increase genomic instability in normal or neoplastic breast epithelium. Cancer. 2006;107(9):2122–6. https://doi.org/10.1002/cncr.22223.

    Article  CAS  PubMed  Google Scholar 

  18. Mizutani T. DES Yakugai. Tokyo: Hon-no-izumi Co.; 2004.

    Google Scholar 

  19. McLachlan JA, Newbold RR, Bullock B. Reproductive tract lesions in male mice exposed prenatally to diethylstilbestrol. Science. 1975;190(4218):991–2.

    Article  CAS  Google Scholar 

  20. Nomura T, Kanzaki T. Induction of urogenital anomalies and some tumors in the progeny of mice receiving diethylstilbestrol during pregnancy. Cancer Res. 1977;37(4):1099–104.

    CAS  PubMed  Google Scholar 

  21. Weisburger JH. Nakahara memorial lecture. Application of the mechanisms of nutritional carcinogenesis to the prevention of cancer. Princess Takamatsu Symp. 1985;16:11–26.

    CAS  PubMed  Google Scholar 

  22. Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc. 2009;4(9):1350–62. https://doi.org/10.1038/nprot.2009.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newbold RR, McLachlan JA. Vaginal adenosis and adenocarcinoma in mice exposed prenatally or neonatally to diethylstilbestrol. Cancer Res. 1982;42(5):2003–11.

    CAS  PubMed  Google Scholar 

  24. Tohyama C. Developmental neurotoxicity guidelines: problems and perspectives. J Toxicol Sci. 2016;41(Special):SP69–79. https://doi.org/10.2131/jts.41.SP69.

    Article  PubMed  Google Scholar 

  25. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8. https://doi.org/10.1016/S1474-4422(13)70278-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. WHO. Evaluation of certain food additives and contaminants. Sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva: WHO; 2004.

    Google Scholar 

  27. WHO. Arsenic fact sheet. 2016. http://www.who.int/mediacentre/factsheets/fs372/en/.

  28. Smith AH, Marshall G, Liaw J, Yuan Y, Ferreccio C, Steinmaus C. Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environ Health Perspect. 2012;120(11):1527–31. https://doi.org/10.1289/ehp.1104867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steinmaus CM, Ferreccio C, Romo JA, Yuan Y, Cortes S, Marshall G, et al. Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomark Prev. 2013;22(4):623–30. https://doi.org/10.1158/1055-9965.EPI-12-1190.

    Article  CAS  Google Scholar 

  30. Cohen G, Jeffery H, Lagercrantz H, Katz-Salamon M. Long-term reprogramming of cardiovascular function in infants of active smokers. Hypertension. 2010;55(3):722–8. https://doi.org/10.1161/HYPERTENSIONAHA.109.142695.

    Article  CAS  PubMed  Google Scholar 

  31. Ekblad M, Korkeila J, Lehtonen L. Smoking during pregnancy affects foetal brain development. Acta Paediatr. 2015;104(1):12–8. https://doi.org/10.1111/apa.12791.

    Article  PubMed  Google Scholar 

  32. Xiao D, Huang X, Yang S, Zhang L. Direct effects of nicotine on contractility of the uterine artery in pregnancy. J Pharmacol Exp Ther. 2007;322(1):180–5. https://doi.org/10.1124/jpet.107.119354.

    Article  CAS  PubMed  Google Scholar 

  33. Chen R, Clifford A, Lang L, Anstey KJ. Is exposure to secondhand smoke associated with cognitive parameters of children and adolescents?—a systematic literature review. Ann Epidemiol. 2013;23(10):652–61. https://doi.org/10.1016/j.annepidem.2013.07.001.

    Article  PubMed  Google Scholar 

  34. Herrmann M, King K, Weitzman M. Prenatal tobacco smoke and postnatal secondhand smoke exposure and child neurodevelopment. Curr Opin Pediatr. 2008;20(2):184–90. https://doi.org/10.1097/MOP.0b013e3282f56165.

    Article  PubMed  Google Scholar 

  35. Council on Environmental Health. Pesticide exposure in children. Pediatrics. 2012;130(6):e1757–63. https://doi.org/10.1542/peds.2012-2757.

    Article  Google Scholar 

  36. Bouchard MF, Bellinger DC, Wright RO, Weisskopf MG. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics. 2010;125(6):e1270–7. https://doi.org/10.1542/peds.2009-3058.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect. 2011;119(8):1189–95. https://doi.org/10.1289/ehp.1003185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect. 2011;119(8):1196–201. https://doi.org/10.1289/ehp.1003160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, et al. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci U S A. 2012;109(20):7871–6. https://doi.org/10.1073/pnas.1203396109.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sanchez-Santed F, Colomina MT, Herrero Hernandez E. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016;74:417–26. https://doi.org/10.1016/j.cortex.2015.10.003.

    Article  PubMed  Google Scholar 

  41. Stallones L, Beseler CL. Assessing the connection between organophosphate pesticide poisoning and mental health: a comparison of neuropsychological symptoms from clinical observations, animal models and epidemiological studies. Cortex. 2016;74:405–16. https://doi.org/10.1016/j.cortex.2015.10.002.

    Article  PubMed  Google Scholar 

  42. Lu C, Toepel K, Irish R, Fenske RA, Barr DB, Bravo R. Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ Health Perspect. 2006;114(2):260–3.

    Article  CAS  Google Scholar 

  43. Sadaria AM, Supowit SD, Halden RU. Halden mass balance assessment for six neonicotinoid insecticides during conventional wastewater and wetland treatment: nationwide reconnaissance in United States wastewater. Environ Sci Technol. 2016;50:6199–206. https://doi.org/10.1021/acs.est.6b01032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueyama J, Harada KH, Koizumi A, Sugiura Y, Kondo T, Saito I, et al. Temporal levels of urinary neonicotinoid and dialkylphosphate concentrations in Japanese women between 1994 and 2011. Environ Sci Technol. 2015;49(24):14522–8. https://doi.org/10.1021/acs.est.5b03062.

    Article  CAS  PubMed  Google Scholar 

  45. Osaka A, Ueyama J, Kondo T, Nomura H, Sugiura Y, Saito I, et al. Exposure characterization of three major insecticide lines in urine of young children in Japan-neonicotinoids, organophosphates, and pyrethroids. Environ Res. 2016;147:89–96. https://doi.org/10.1016/j.envres.2016.01.028.

    Article  CAS  PubMed  Google Scholar 

  46. Sano K, Isobe T, Yang J, Win-Shwe TT, Yoshikane M, Nakayama SF, et al. In utero and lactational exposure to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice. Front Neurosci. 2016;10:228. https://doi.org/10.3389/fnins.2016.00228.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kimura-Kuroda J, Komuta Y, Kuroda Y, Hayashi M, Kawano H. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats. PLoS One. 2012;7(2):e32432. https://doi.org/10.1371/journal.pone.0032432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schecter A, Gasiewicz TA, editors. Dioxin and health. 2nd ed. Hoboken: Wiley; 2005. https://doi.org/10.1002/0471722014.

    Book  Google Scholar 

  49. Yoshioka W, Peterson RE, Tohyama C. Molecular targets that link dioxin exposure to toxicity phenotypes. J Steroid Biochem Mol Biol. 2011;127(1–2):96–101. https://doi.org/10.1016/j.jsbmb.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  50. Myers JP, vom Saal FS, Akingbemi BT, Arizono K, Belcher S, Colborn T, et al. Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A. Environ Health Perspect. 2009;117(3):309–15. https://doi.org/10.1289/ehp.0800173.

    Article  CAS  PubMed  Google Scholar 

  51. Konkle AT, McCarthy MM. Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology. 2011;152(1):223–35. https://doi.org/10.1210/en.2010-0607.

    Article  CAS  PubMed  Google Scholar 

  52. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids. Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: executive summary. 2015. https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2015.3978. Accessed 20 Sept 2018.

  53. Leranth C, Hajszan T, Szigeti-Buck K, Bober J, MacLusky NJ. Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci U S A. 2008;105(37):14187–91. https://doi.org/10.1073/pnas.0806139105.

    Article  PubMed  PubMed Central  Google Scholar 

  54. MacLusky NJ, Hajszan T, Leranth C. The environmental estrogen bisphenol A inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspect. 2005;113(6):675–9.

    Article  CAS  Google Scholar 

  55. Kimura E, Matsuyoshi C, Miyazaki W, Benner S, Hosokawa M, Yokoyama K, et al. Prenatal exposure to bisphenol A impacts neuronal morphology in the hippocampal CA1 region in developing and aged mice. Arch Toxicol. 2016;90(3):691–700. https://doi.org/10.1007/s00204-015-1485-x.

    Article  CAS  PubMed  Google Scholar 

  56. Poimenova A, Markaki E, Rahiotis C, Kitraki E. Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A. Neuroscience. 2010;167(3):741–9. https://doi.org/10.1016/j.neuroscience.2010.02.051.

    Article  CAS  PubMed  Google Scholar 

  57. Tian YH, Baek JH, Lee SY, Jang CG. Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse. 2010;64(6):432–9. https://doi.org/10.1002/syn.20746.

    Article  CAS  PubMed  Google Scholar 

  58. Xu X, Hong X, Xie L, Li T, Yang Y, Zhang Q, et al. Gestational and lactational exposure to bisphenol-A affects anxiety- and depression-like behaviors in mice. Horm Behav. 2012;62(4):480–90.

    Article  CAS  Google Scholar 

  59. Luo G, Wang S, Li Z, Wei R, Zhang L, Liu H, et al. Maternal bisphenol a diet induces anxiety-like behavior in female juvenile with neuroimmune activation. Toxicol Sci. 2014;140(2):364–73. https://doi.org/10.1093/toxsci/kfu085.

    Article  CAS  PubMed  Google Scholar 

  60. Wolstenholme JT, Goldsby JA, Rissman EF. Transgenerational effects of prenatal bisphenol A on social recognition. Horm Behav. 2013;64(5):833–9. https://doi.org/10.1016/j.yhbeh.2013.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Walker DM, Gore AC. Epigenetic impacts of endocrine disruptors in the brain. Front Neuroendocrinol. 2017;44:1–26. https://doi.org/10.1016/j.yfrne.2016.09.002.

    Article  CAS  PubMed  Google Scholar 

  62. Endo T, Kakeyama M, Uemura Y, Haijima A, Okuno H, Bito H, et al. Executive function deficits and social-behavioral abnormality in mice exposed to a low dose of dioxin in utero and via lactation. PLoS One. 2012;7(12):e50741. https://doi.org/10.1371/journal.pone.0050741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haijima A, Endo T, Zhang Y, Miyazaki W, Kakeyama M, Tohyama C. In utero and lactational exposure to low doses of chlorinated and brominated dioxins induces deficits in the fear memory of male mice. Neurotoxicology. 2010;31(4):385–90. https://doi.org/10.1016/j.neuro.2010.04.004.

    Article  CAS  PubMed  Google Scholar 

  64. Hojo R, Stern S, Zareba G, Markowski VP, Cox C, Kost JT, et al. Sexually dimorphic behavioral responses to prenatal dioxin exposure. Environ Health Perspect. 2002;110(3):247–54.

    Article  CAS  Google Scholar 

  65. Ishihara K, Warita K, Tanida T, Sugawara T, Kitagawa H, Hoshi N. Does paternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affect the sex ratio of offspring? J Vet Med Sci. 2007;69(4):347–52.

    Article  CAS  Google Scholar 

  66. Kakeyama M, Endo T, Zhang Y, Miyazaki W, Tohyama C. Disruption of paired-associate learning in rat offspring perinatally exposed to dioxins. Arch Toxicol. 2014;88(3):789–98. https://doi.org/10.1007/s00204-013-1161-y.

    Article  CAS  PubMed  Google Scholar 

  67. Markowski VP, Zareba G, Stern S, Cox C, Weiss B. Altered operant responding for motor reinforcement and the determination of benchmark doses following perinatal exposure to low-level 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspect. 2001;109(6):621–7.

    Article  CAS  Google Scholar 

  68. Mitsui T, Sugiyama N, Maeda S, Tohyama C, Arita J. Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin suppresses contextual fear conditioning-accompanied activation of cyclic AMP response element-binding protein in the hippocampal CA1 region of male rats. Neurosci Lett. 2006;398(3):206–10. https://doi.org/10.1016/j.neulet.2005.12.087.

    Article  CAS  PubMed  Google Scholar 

  69. Schantz SL, Seo BW, Moshtaghian J, Peterson RE, Moore RW. Effects of gestational and lactational exposure to TCDD or coplanar PCBs on spatial learning. Neurotoxicol Teratol. 1996;18(3):305–13.

    Article  CAS  Google Scholar 

  70. Kimura E, Kubo K, Matsuyoshi C, Benner S, Hosokawa M, Endo T, et al. Developmental origin of abnormal dendritic growth in the mouse brain induced by in utero disruption of aryl hydrocarbon receptor signaling. Neurotoxicol Teratol. 2015;52(Pt A):42–50. https://doi.org/10.1016/j.ntt.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  71. Hood DB, Woods L, Brown L, Johnson S, Ebner FF. Gestational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure effects on sensory cortex function. Neurotoxicology. 2006;27(6):1032–42. https://doi.org/10.1016/j.neuro.2006.05.022.

    Article  CAS  PubMed  Google Scholar 

  72. Kakeyama M, Sone H, Miyabara Y, Tohyama C. Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters activity-dependent expression of BDNF mRNA in the neocortex and male rat sexual behavior in adulthood. Neurotoxicology. 2003;24(2):207–17. https://doi.org/10.1016/S0161-813X(02)00214-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiharu Tohyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tohyama, C. (2019). Maternal Exposure to Environmental Chemicals and Health Outcomes Later in Life. In: Sata, F., Fukuoka, H., Hanson, M. (eds) Pre-emptive Medicine: Public Health Aspects of Developmental Origins of Health and Disease. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2194-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2194-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2193-1

  • Online ISBN: 978-981-13-2194-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics