A. P. Balachandran, G. Marmo, A. Simoni, G. Sparano: Quantum bundles and their symmetries, Internat. J. Modern Phys. A 7 (1992), 1641–1667.
MathSciNet
CrossRef
Google Scholar
C.C. Barros Jr.: Quantum mechanics in a curved space–time, Eur. Phys. J. C 42 (2005), 119–126.
MathSciNet
CrossRef
Google Scholar
E. Cartan: Sur les variétés à connexion affine et la théorie de la rélativité généralisée, Gauthier Villars, Paris, 1955. English translation: Bibliopolis, Napoli, 1986.
Google Scholar
G. Dautcourt: Die Newtonische Gravitationstheorie als strenger Grenzfall der allgemeinen Relativitätstheorie, Acta Phys. Polon. 25: 637–647 (1964).
MathSciNet
Google Scholar
G. Dautcourt: On the Newtonian limit of general relativity, Acta Phys. Polon. B 21 (1990), 755–765.
MathSciNet
Google Scholar
H.D. Dombrowski, K. Horneffer: Die Differentialgeometrie des Galileischen Relativitätsprinzips, Math. Z. 86 (1964), 291–311.
MathSciNet
CrossRef
Google Scholar
C. Duval: On Galilean isometries, Classical Quantum Gravity 10 (1993), 2217–2221.
MathSciNet
CrossRef
Google Scholar
C. Duval, G. Burdet, H.P. Künzle, M. Perrin: Bargmann structures and Newton-Cartan theory, Phys. Rev. D(3) 31 (1985), 1841–1853.
MathSciNet
CrossRef
Google Scholar
C. Duval, H.P. Künzle: Sur les connexions newtoniennes et l’extension non triviale du groupe de Galilée, C.R.Acad. Sci. Paris , 275 A, (1977), 813–816.
Google Scholar
C. Duval, H.P. Künzle: Minimal Gravitational Coupling in the Newtonian Theory and the Covariant Schrödinger Equation, General Relativity and Gravitation , Vol. 16, No. 4 (1985), 333–347.
CrossRef
Google Scholar
J. Ehlers: The Newtonian limit of general relativity, in “Fisica Matematica Classica e Relatività”, Elba, 1989, 95–106.
Google Scholar
J. Ehlers: Examples of Newtonian limits of relativistic spacetimes, Class. Quantum Grav. 14 (1997) A119–A126.
MathSciNet
CrossRef
Google Scholar
J.R. Fanchi: Review of invariant time formulations of relativistic quantum theories, Found. Phys. 23 (1993), 487–548.
MathSciNet
CrossRef
Google Scholar
K. Friedrichs: Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz, Mathematische Annalen - 98 | Periodical, 566–575.
Google Scholar
T. Garavaglia: Covariant relativistic quantum theory, arXiv:hep-th/0011180v1, 2000, 1–19.
K. Grabowska, J. Grabowski, P. Urbański: The Schrödinger operator in Newtonian space–time, arXiv:math-ph/0611044v1, 2006, 1–7.
K. Grabowska, J. Grabowski, P. Urbański: The Schrödinger operator as generalized Laplacian, J. Phys. A: Math. and Theor. 41 (2008) 145204. arXiv:math-ph/0711.2777v1, 1–7.
MathSciNet
CrossRef
Google Scholar
K. Grabowska, P. Urbański: Frame–independent formulation of Newtonian mechanics, arXiv:math-ph/0404073v1, 2004, 1–19.
A. Jadczyk, J. Janyška, M. Modugno: Galilei general relativistic quantum mechanics revisited, in “Geometria, Física-Matemática e outros Ensaios”, Homenagem a António Ribeiro Gomes, A. S. Alves, F. J. Craveiro de Carvalho and J. A. Pereira da Silva Eds., Coimbra, 1998, 253–313.
Google Scholar
A. Jadczyk, M. Modugno: Galilei general relativistic quantum mechanics, report, Dept. of Appl. Math., Univ. of Florence, 1994.
Google Scholar
J. Janyška, M. Modugno: Relations between linear connections on the tangent bundle and connections on the jet bundle of a fibred manifold, Arch. Math. (Brno) 32 (1996), 281–288.
MathSciNet
MATH
Google Scholar
J. Janyška, M. Modugno: Covariant Schrödinger operator, J. Phys. A 35 (2002), 8407–8434.
MathSciNet
CrossRef
Google Scholar
J. Janyška, M. Modugno: Hermitian vector fields and special phase functions, Int. J. Geom. Methods Mod. Phys. 3 (2006), 719–754.
MathSciNet
CrossRef
Google Scholar
J. Janyška, M. Modugno: Generalized geometrical structures of odd dimensional manifolds, J. Math. Pures Appl. (9) 91 (2009), 221–232.
MathSciNet
CrossRef
Google Scholar
J. Janyška, M. Modugno: Quantum potential in covariant quantum mechanics, Diff. Geom. Appl. 54 (2017), 175–193.
MathSciNet
CrossRef
Google Scholar
J. Janyška, M. Modugno, D. Saller: Covariant quantum mechanics and quantum symmetries, in “Recent Developments in General Relativity, Genova 2000”, R. Cianci, R. Collina, M. Francaviglia, P. Fré Eds., Springer–Verlag, Milano, 2002, 179–201.
CrossRef
Google Scholar
J. Janyška, M. Modugno, R. Vitolo: An algebraic approach to physical scales, Acta Appl. Math. 110 (2010), 1249–1276.
MathSciNet
CrossRef
Google Scholar
K. Kuchař: Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D 22 (1980), 1285–1299.
MathSciNet
CrossRef
Google Scholar
H. P. Künzle: Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics, Ann. Inst. H. Poincaré Sect. A (N.S.) 17 (1972), 337–362.
Google Scholar
H. P. Künzle: Galilei and Lorentz invariance of classical particle interaction, Symposia Mathematica 14 (1974), 53–84.
MathSciNet
MATH
Google Scholar
H. P. Künzle: Covariant Newtonian limit of Lorentz space–times, Gen. Relativity Gravitation 7 (1976), 445–457.
MathSciNet
CrossRef
Google Scholar
H. P. Künzle: General covariance and minimal gravitational coupling in Newtonian space-time, in “Geometrodynamics", A. Prastaro Ed., Pitagora , Bologna, 1984, 37–48.
Google Scholar
M. Le Bellac, J. M. Levy-Leblond: Galilean electromagnetism, Nuovo Cim. 14 B, 2 (1973), 217–233.
Google Scholar
M. Modugno, D. Saller, J. Tolksdorf, Classification of infinitesimal symmetries in covariant classical mechanics, J. Math. Phys. 47 (2006), 062903.
MathSciNet
CrossRef
Google Scholar
D. Saller: Symmetries in covariant quantum mechanics, PhD Thesis, Mannheim University, Mannheim, Germany, 2001.
Google Scholar
D. Saller, R. Vitolo: Symmetries in covariant classical mechanics, J. Math. Phys. 41 (2000), 6824–6842.
MathSciNet
CrossRef
Google Scholar
E. Schmutzer, J. Plebanski: Quantum mechanics in non inertial frames of reference, Fortschr. Physik 25 (1977), 37–82.
MathSciNet
CrossRef
Google Scholar
A. Trautman: Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sci. Paris 257 (1963), 617–620.
MathSciNet
MATH
Google Scholar
A. Trautman: Comparison of Newtonian and relativistic theories of space-time, In “Perspectives in geometry and relativity”, N. 42, Indiana Univ. Press, 1964, 413–425.
Google Scholar
W. M. Tulczyjew: An intrinsic formulation of nonrelativistic analytical mechanics and wave mechanics, J. Geom. Phys. 2 (1985), 93–105.
MathSciNet
CrossRef
Google Scholar
R. Vitolo: Quantum structures in Galilei general relativity, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 239–257.
MathSciNet
MATH
Google Scholar
R. Vitolo: Variational sequences, in “Handbook of Global Analysis”, D. Krupka and D. Saunders Eds., Elsevier, 2007, 1115–1163.
Google Scholar