Skip to main content

Infinitesimal Symmetries in Covariant Quantum Mechanics

  • 479 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 255)

Abstract

We discuss the Lie algebras of infinitesimal symmetries of the main covariant geometric objects of covariant quantum mechanics: the time form, the hermitian metric, the upper quantum connection, the quantum lagrangian. Indeed, these infinitesimal symmetries are generated, in a covariant way, by the Lie algebra of time preserving conserved special phase functions. Actually, this Lie algebra of special phase functions generates also the Lie algebra of infinitesimal symmetries of the main classical objects: the time form and the cosymplectic 2-form. A natural output of the classification of the quantum symmetries is a covariant approach to quantum operators and to quantum currents associated with special phase functions.

Keywords

  • Covariant classical mechanics
  • Covariant quantum mechanics
  • Quantum symmetries

2010 MSC:

  • 81Q99
  • 81S10
  • 83C00
  • 70H40
  • 70G45
  • 58A20.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-2179-5_25
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-2179-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  1. A. P. Balachandran, G. Marmo, A. Simoni, G. Sparano: Quantum bundles and their symmetries, Internat. J. Modern Phys. A 7 (1992), 1641–1667.

    MathSciNet  CrossRef  Google Scholar 

  2. C.C. Barros Jr.: Quantum mechanics in a curved space–time, Eur. Phys. J. C 42 (2005), 119–126.

    MathSciNet  CrossRef  Google Scholar 

  3. E. Cartan: Sur les variétés à connexion affine et la théorie de la rélativité généralisée, Gauthier Villars, Paris, 1955. English translation: Bibliopolis, Napoli, 1986.

    Google Scholar 

  4. G. Dautcourt: Die Newtonische Gravitationstheorie als strenger Grenzfall der allgemeinen Relativitätstheorie, Acta Phys. Polon. 25: 637–647 (1964).

    MathSciNet  Google Scholar 

  5. G. Dautcourt: On the Newtonian limit of general relativity, Acta Phys. Polon. B 21 (1990), 755–765.

    MathSciNet  Google Scholar 

  6. H.D. Dombrowski, K. Horneffer: Die Differentialgeometrie des Galileischen Relativitätsprinzips, Math. Z. 86 (1964), 291–311.

    MathSciNet  CrossRef  Google Scholar 

  7. C. Duval: On Galilean isometries, Classical Quantum Gravity 10 (1993), 2217–2221.

    MathSciNet  CrossRef  Google Scholar 

  8. C. Duval, G. Burdet, H.P. Künzle, M. Perrin: Bargmann structures and Newton-Cartan theory, Phys. Rev. D(3) 31 (1985), 1841–1853.

    MathSciNet  CrossRef  Google Scholar 

  9. C. Duval, H.P. Künzle: Sur les connexions newtoniennes et l’extension non triviale du groupe de Galilée, C.R.Acad. Sci. Paris , 275 A, (1977), 813–816.

    Google Scholar 

  10. C. Duval, H.P. Künzle: Minimal Gravitational Coupling in the Newtonian Theory and the Covariant Schrödinger Equation, General Relativity and Gravitation , Vol. 16, No. 4 (1985), 333–347.

    CrossRef  Google Scholar 

  11. J. Ehlers: The Newtonian limit of general relativity, in “Fisica Matematica Classica e Relatività”, Elba, 1989, 95–106.

    Google Scholar 

  12. J. Ehlers: Examples of Newtonian limits of relativistic spacetimes, Class. Quantum Grav. 14 (1997) A119–A126.

    MathSciNet  CrossRef  Google Scholar 

  13. J.R. Fanchi: Review of invariant time formulations of relativistic quantum theories, Found. Phys. 23 (1993), 487–548.

    MathSciNet  CrossRef  Google Scholar 

  14. K. Friedrichs: Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz, Mathematische Annalen - 98 | Periodical, 566–575.

    Google Scholar 

  15. T. Garavaglia: Covariant relativistic quantum theory, arXiv:hep-th/0011180v1, 2000, 1–19.

  16. K. Grabowska, J. Grabowski, P. Urbański: The Schrödinger operator in Newtonian space–time, arXiv:math-ph/0611044v1, 2006, 1–7.

  17. K. Grabowska, J. Grabowski, P. Urbański: The Schrödinger operator as generalized Laplacian, J. Phys. A: Math. and Theor. 41 (2008) 145204. arXiv:math-ph/0711.2777v1, 1–7.

    MathSciNet  CrossRef  Google Scholar 

  18. K. Grabowska, P. Urbański: Frame–independent formulation of Newtonian mechanics, arXiv:math-ph/0404073v1, 2004, 1–19.

  19. A. Jadczyk, J. Janyška, M. Modugno: Galilei general relativistic quantum mechanics revisited, in “Geometria, Física-Matemática e outros Ensaios”, Homenagem a António Ribeiro Gomes, A. S. Alves, F. J. Craveiro de Carvalho and J. A. Pereira da Silva Eds., Coimbra, 1998, 253–313.

    Google Scholar 

  20. A. Jadczyk, M. Modugno: Galilei general relativistic quantum mechanics, report, Dept. of Appl. Math., Univ. of Florence, 1994.

    Google Scholar 

  21. J. Janyška, M. Modugno: Relations between linear connections on the tangent bundle and connections on the jet bundle of a fibred manifold, Arch. Math. (Brno) 32 (1996), 281–288.

    MathSciNet  MATH  Google Scholar 

  22. J. Janyška, M. Modugno: Covariant Schrödinger operator, J. Phys. A 35 (2002), 8407–8434.

    MathSciNet  CrossRef  Google Scholar 

  23. J. Janyška, M. Modugno: Hermitian vector fields and special phase functions, Int. J. Geom. Methods Mod. Phys. 3 (2006), 719–754.

    MathSciNet  CrossRef  Google Scholar 

  24. J. Janyška, M. Modugno: Generalized geometrical structures of odd dimensional manifolds, J. Math. Pures Appl. (9) 91 (2009), 221–232.

    MathSciNet  CrossRef  Google Scholar 

  25. J. Janyška, M. Modugno: Quantum potential in covariant quantum mechanics, Diff. Geom. Appl. 54 (2017), 175–193.

    MathSciNet  CrossRef  Google Scholar 

  26. J. Janyška, M. Modugno, D. Saller: Covariant quantum mechanics and quantum symmetries, in “Recent Developments in General Relativity, Genova 2000”, R. Cianci, R. Collina, M. Francaviglia, P. Fré Eds., Springer–Verlag, Milano, 2002, 179–201.

    CrossRef  Google Scholar 

  27. J. Janyška, M. Modugno, R. Vitolo: An algebraic approach to physical scales, Acta Appl. Math. 110 (2010), 1249–1276.

    MathSciNet  CrossRef  Google Scholar 

  28. K. Kuchař: Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D 22 (1980), 1285–1299.

    MathSciNet  CrossRef  Google Scholar 

  29. H. P. Künzle: Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics, Ann. Inst. H. Poincaré Sect. A (N.S.) 17 (1972), 337–362.

    Google Scholar 

  30. H. P. Künzle: Galilei and Lorentz invariance of classical particle interaction, Symposia Mathematica 14 (1974), 53–84.

    MathSciNet  MATH  Google Scholar 

  31. H. P. Künzle: Covariant Newtonian limit of Lorentz space–times, Gen. Relativity Gravitation 7 (1976), 445–457.

    MathSciNet  CrossRef  Google Scholar 

  32. H. P. Künzle: General covariance and minimal gravitational coupling in Newtonian space-time, in “Geometrodynamics", A. Prastaro Ed., Pitagora , Bologna, 1984, 37–48.

    Google Scholar 

  33. M. Le Bellac, J. M. Levy-Leblond: Galilean electromagnetism, Nuovo Cim. 14 B, 2 (1973), 217–233.

    Google Scholar 

  34. M. Modugno, D. Saller, J. Tolksdorf, Classification of infinitesimal symmetries in covariant classical mechanics, J. Math. Phys. 47 (2006), 062903.

    MathSciNet  CrossRef  Google Scholar 

  35. D. Saller: Symmetries in covariant quantum mechanics, PhD Thesis, Mannheim University, Mannheim, Germany, 2001.

    Google Scholar 

  36. D. Saller, R. Vitolo: Symmetries in covariant classical mechanics, J. Math. Phys. 41 (2000), 6824–6842.

    MathSciNet  CrossRef  Google Scholar 

  37. E. Schmutzer, J. Plebanski: Quantum mechanics in non inertial frames of reference, Fortschr. Physik 25 (1977), 37–82.

    MathSciNet  CrossRef  Google Scholar 

  38. A. Trautman: Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sci. Paris 257 (1963), 617–620.

    MathSciNet  MATH  Google Scholar 

  39. A. Trautman: Comparison of Newtonian and relativistic theories of space-time, In “Perspectives in geometry and relativity”, N. 42, Indiana Univ. Press, 1964, 413–425.

    Google Scholar 

  40. W. M. Tulczyjew: An intrinsic formulation of nonrelativistic analytical mechanics and wave mechanics, J. Geom. Phys. 2 (1985), 93–105.

    MathSciNet  CrossRef  Google Scholar 

  41. R. Vitolo: Quantum structures in Galilei general relativity, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), 239–257.

    MathSciNet  MATH  Google Scholar 

  42. R. Vitolo: Variational sequences, in “Handbook of Global Analysis”, D. Krupka and D. Saunders Eds., Elsevier, 2007, 1115–1163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josef Janyška or Marco Modugno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Janyška, J., Modugno, M., Saller, D. (2018). Infinitesimal Symmetries in Covariant Quantum Mechanics. In: Dobrev, V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2. LT-XII/QTS-X 2017. Springer Proceedings in Mathematics & Statistics, vol 255. Springer, Singapore. https://doi.org/10.1007/978-981-13-2179-5_25

Download citation