Skip to main content

Differential Changes in Tea Quality as Influenced by Insect Herbivory

  • Chapter
  • First Online:
Stress Physiology of Tea in the Face of Climate Change

Abstract

Tea quality depends on plant metabolites that impact flavor, aroma, and health-beneficial properties. Plants respond to insect herbivory by altering the concentration and blend of these metabolites, and many secondary metabolites are produced only after insect attack. Research in tea and other plants shows that insect herbivores affect the concentrations of metabolites important to tea quality such as volatiles, polyphenols, methylxanthines, and amino acids. Plants, including tea, respond differently to different insect herbivores by producing different blends of metabolites. Tea plant metabolites also vary in their responses to increasing herbivore density which results in a change in metabolite blends as herbivore density changes. Because climate change is predicted to impact the density and species composition of insect herbivores in tea-growing regions of the world, induction of metabolic changes by insect herbivores represents a potentially important indirect effect of climate change on tea quality. Although it is often assumed that insect attack is detrimental to tea quality, there are some cases where tea quality is improved by herbivore-induced changes in tea metabolites. It is therefore possible that allowing some insect herbivory could be an important strategy for mitigating detrimental effects of climate on tea quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Orians CM, Griffin T, et al (2013) Effects of water availability and Pest pressures on tea (Camellia sinensis) growth and functional quality. AoB plants 6:plt054

    Google Scholar 

  • Ahmed S, Stepp JR, Orians CM et al (2014) Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS One 9:e109126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH et al (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Ángeles-López YI, Rivera-Bustamante RF, Heil M (2016) Colonization by phloem-feeding herbivore overrides effects of plant virus on amino acid composition in phloem of chili plants. J Chem Ecol:1–4

    Google Scholar 

  • Ayres MP (1993) Plant defense, herbivory, and climate change. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer Associates Incorporated, Sunderland, MA

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Bandyopadhyay T, Gohain B, Bharalee R et al (2014) Molecular landscape of Helopeltis theivora induced transcriptome and defense gene expression in tea. Plant Mol Biol Rep 33:1042–1057

    Article  CAS  Google Scholar 

  • Bansal S, Choudhary S, Sharma M et al (2013) Tea: a native source of antimicrobial agents. Food Res Int 53:568–584

    Article  CAS  PubMed Central  Google Scholar 

  • Barbehenn RV, Constabel CP (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum MR, Zangerl AR (1998) Chemical phenotype matching between a plant and its insect herbivore. PNAS 95:13743–13748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berggren Å, Björkman C, Bylund H, Ayres MP (2009) The distribution and abundance of animal populations in a climate of uncertainty. Oikos 118:1121–1126

    Article  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plantarum 97:194–208

    Article  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Brilli F, Ciccioli P, Frattoni M et al (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus x euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552

    Article  CAS  PubMed  Google Scholar 

  • Brodbeck BV, Mizell RF, French WJ et al (1990) Amino acids as determinants of host preference for the xylem feeding leafhopper, Homalodisca coagulata (Homoptera: Cicadellidae). Oecologia 83:338–345

    Article  PubMed  Google Scholar 

  • Cai X-M, Sun X-L, Dong W-X et al (2012) Variability and stability of tea weevil-induced volatile emissions from tea plants with different weevil densities, photoperiod and infestation duration. Insect Science 19:507–517

    Article  CAS  Google Scholar 

  • Cai X-M, Sun XL, Dong WX et al (2014) Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24:1–14

    Article  CAS  Google Scholar 

  • Camfield DA, Stough C, Farrimond J, Scholey AB (2014) Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutr Rev 72:507–522

    Article  PubMed  Google Scholar 

  • Chakraborty U, Chakraborty N (2005) Impact of environmental factors on infestation of tea leaves by Helopeltis theivora, and associated changes in flavonoid flavor components and enzyme activities. Phytoparasitica 33:88–96

    Article  CAS  Google Scholar 

  • Chin JM, Merves ML, Goldberger BA et al (2008) Caffeine content of brewed teas. J Anal Toxicol 32:702–704

    Article  CAS  PubMed  Google Scholar 

  • Cho J-Y, Mizutani M, Shimizu B-I et al (2007) Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “Oriental Beauty”. Biosci Biotechnol Biochem 71:1476–1486

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury RS, Moly IS, Ahmed M et al (2016) Impact of the mosquito bug (Helopeltis theivora) infestation on the quality of tea (Camellia sinensis). Bangladesh J Zool 44:197–207

    Article  Google Scholar 

  • Cipollini D, Heil M (2010) Costs and benefits of induced resistance to herbivores and pathogens in plants. Plant Sci Rev 5:1–25

    Google Scholar 

  • Close DC, McArthur C (2002) Rethinking the role of many plant phenolics—protection from photodamage not herbivores? Oikos 99:166–172

    Article  CAS  Google Scholar 

  • Crespy V, Williamson G (2004) A review of the health effects of green tea catechins in in vivo animal models. J Nutr 134:3431S–3440S

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira EF, Pallini A, Janssen A (2015) Herbivores with similar feeding modes interact through the induction of different plant responses. Oecologia 180:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant-insect interactions. Plant Physiol 160:1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias TR, Tomás G, Teixeira NF, Alves MG (2013) White tea (Camellia Sinensis (L.)): antioxidant properties and beneficial health effects. Int J Food Sci Nutr Diet 2:19–26

    Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help”. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  • Diezel C, von CC D, Gaquerel E, Baldwin IT (2009) Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150:1576–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong F, Yang Z, Baldermann S et al (2011) Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in Intraplant communication and changes in endogenous nonvolatile metabolites. J Agric Food Chem 59:13131–13135

    Article  CAS  PubMed  Google Scholar 

  • Drewnowski A (2001) The science and complexity of bitter taste. Nutr Rev 59:163–169

    Article  CAS  PubMed  Google Scholar 

  • Dufresne CJ, Farnworth ER (2001) A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 12:404–421

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Fang R, Redfern SP, Kirkup D et al (2016) Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chem 220:571–526

    Google Scholar 

  • Feng L, Gao MJ, Hou RY et al (2014) Determination of quality constituents in the young leaves of albino tea cultivars. Food Chem 155:98–104

    Article  CAS  PubMed  Google Scholar 

  • Fischer W-N, André B, Rentsch D et al (1998) Amino acid transport in plants. Trends Plant Sci 3:188–195

    Article  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J, Nehlig A (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Fu J-Y, Han B-Y, Xiao Q (2014) Mitochondrial COI and 16sRNA evidence for a single species hypothesis of E. vitis, J. formosana and E. onukii in East Asia. PLoS One 9:e115259

    Google Scholar 

  • Gao J, Zhao D, Chen Z (2003) Predatory function of Evarcha albaria upon Empoasca vitis. Chin J Trop Crop 25:72–74

    Google Scholar 

  • Gohain B, Borchetia S, Bhorali P et al (2012) Understanding Darjeeling tea flavour on a molecular basis. Plant Mol Biol 78:577–597

    Article  CAS  PubMed  Google Scholar 

  • Gómez S, Ferrieri RA, Schueller M, Orians CM (2010) Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato. New Phytol 188:835–844

    Article  PubMed  CAS  Google Scholar 

  • Granato D, Katayama FCU, de Castro IA (2011) Phenolic composition of South American red wines classified according to their antioxidant activity, retail price and sensory quality. Food Chem 129:366–373

    Article  CAS  PubMed  Google Scholar 

  • Han BY, Chen ZM (2002) Composition of the volatiles from intact and mechanically pierced tea aphid−tea shoot complexes and their attraction to natural enemies of the tea aphid. J Agric Food Chem 50:2571–2575

    Article  CAS  PubMed  Google Scholar 

  • Han W-Y, Huang J-G, Li X et al (2017) Altitudinal effects on the quality of green tea in East China: a climate change perspective. Eur Food Res Technol 243:323–330

    Article  CAS  Google Scholar 

  • Hare JD (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180

    Article  CAS  PubMed  Google Scholar 

  • Hatvala Tea and Coffee (2016) Oriental beauty: estate oolong tea, son La, Vietnam. In: Hatvala Tea and Coffee. http://drinksbeansandleaves.com/Vietnamese-Tea/Vietnam-Oolong-Tea/Oriental Beauty Oolong-Tea-Vietnam . Accessed 4 Oct 2017

  • Hazarika LK, Bhuyan M, Hazarika BN (2009) Insect pests of tea and their management. Annu Rev Entomol 54:267–284

    Article  CAS  PubMed  Google Scholar 

  • Hewavitharanage P, Karunaratne S, Kumar NS (1999) Effect of caffeine on shot-hole borer beetle (Xyleborusfornicatus) of tea (Camellia sinensis). Phytochemistry 51:35–41

    Article  CAS  Google Scholar 

  • Hogg DB (1985) Potato leafhopper (Homoptera: Cicadellidae) immature development, life tables, and population dynamics under fluctuating temperature regimes. Environ Entomol 14:349–355

    Article  Google Scholar 

  • Holderbaum DF, Kon T, Kudo T, Guerra MP (2010) Enzymatic browning, polyphenol oxidase activity, and polyphenols in four apple cultivars: dynamics during fruit development. Hortscience 45:1150–1154

    Google Scholar 

  • Hollingsworth RG, Armstrong JW, Campbell E (2003) Caffeine as a novel toxicant for slugs and snails. Ann Appl Biol 142:91–97

    Article  CAS  Google Scholar 

  • Horiuchi J-I, Arimura G-I, Ozawa R et al (2003) A comparison of the responses of Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) to volatiles emitted from lima bean leaves with different levels of damage made by T. urticae or Spodoptera exigua (Lepidoptera: Noctuidae). Appl Entomol Zool 38:109–116

    Article  Google Scholar 

  • IPCC (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge, UK

    Google Scholar 

  • Jin S, Chen ZM, Backus EA et al (2012) Characterization of EPG waveforms for the tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), on tea plants and their correlation with stylet activities. J Insect Physiol 58:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Kallenbach M, Bonaventure G, Gilardoni PA et al (2012) Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. PNAS 109:E1548–E1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko S, Kumazawa K, Masuda H et al (2006) Molecular and sensory studies on the umami taste of Japanese green tea. J Agric Food Chem 54:2688–2694

    Article  CAS  PubMed  Google Scholar 

  • Karban R (1989) Induced plant responses to herbivory. Annu Rev Ecol Syst 20:331–348

    Article  Google Scholar 

  • Karban R, Shiojiri K, Ishizaki S et al (2013) Kin recognition affects plant communication and defence. Proc R Soc 280:20123062

    Article  Google Scholar 

  • Kawakami M, Ganguly SN, Banerjee J, Kobayashi A (1995) Aroma composition of oolong tea and black tea by brewed extraction method and characterizing compounds of Darjeeling tea aroma. J Agric Food Chem 43:200–207

    Article  CAS  Google Scholar 

  • Kessler A (2015) The information landscape of plant constitutive and induced secondary metabolite production. Curr Opin Insect Sci 8:47–53

    Article  PubMed  Google Scholar 

  • Kim Y-S, Lim S, Kang K-K et al (2011) Resistance against beet armyworms and cotton aphids in caffeine-producing transgenic chrysanthemum. Plant Biotechnol 28:393–395

    Article  CAS  Google Scholar 

  • Kishimoto T, Wanikawa A, Kagami N, Kawatsura K (2005) Analysis of hop-derived Terpenoids in beer and evaluation of their behavior using the stir bar–Sorptive extraction method with GC-MS. J Agric Food Chem 53:4701–4707

    Article  CAS  PubMed  Google Scholar 

  • Kito M, Kokura H, Izaki J, Sasaoka K (1968) Theanine, a precursor of the phloroglucinol nucleus of catechins in tea plants. Phytochemistry 7:599–603

    Article  CAS  Google Scholar 

  • Kowalsick A, Kfoury N, Robbat A Jr et al (2014) Metabolite profiling of Camellia sinensis by automated sequential, multidimensional gas chromatography/mass spectrometry reveals strong monsoon effects on tea constituents. J Chromatogr A 1370:230–239

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y, Yao I, Akimoto S-I (2004) Aphid galls accumulate high concentrations of amino acids: a support for the nutrition hypothesis for gall formation. Entomol Exp Appl 113:35–44

    Article  CAS  Google Scholar 

  • Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184

    Article  PubMed  Google Scholar 

  • Levin DA (1971) Plant Phenolics: an ecological perspective. Am Nat 105:157–181

    Article  CAS  Google Scholar 

  • Li C-F, Yao M-Z, Ma C-L et al (2015) Differential metabolic profiles during the albescent stages of “Anji Baicha” (Camellia sinensis). PLoS One 10:e0139996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Ahammed GJ, Li Z et al (2016a) Decreased biosynthesis of Jasmonic acid via lipoxygenase pathway compromised caffeine-induced resistance to Colletotrichum gloeosporioides under elevated CO2 in tea seedlings. Phytopathology 106:1270–1277

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dicke M, Kroes A et al (2016b) Interactive effects of cabbage aphid and Caterpillar herbivory on transcription of plant genes associated with Phytohormonal Signalling in wild cabbage. J Chem Ecol 42:1–13

    Article  CAS  Google Scholar 

  • Li J-Y, Shi M-Z, Fu J-W et al (2017) Physiological and biochemical responses of Camellia sinensis to stress associated with Empoasca vitis feeding. Arthropod Plant Interact 24:1–11

    Google Scholar 

  • Lin Y-S, Tsai Y-J, Jyh-Shyan Tsay A, Lin J-K (2003) Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agric Food Chem 51:1864–1873

    Article  CAS  PubMed  Google Scholar 

  • Lortzing T, Steppuhn A (2016) Jasmonate signalling in plants shapes plant–insect interaction ecology. Curr Opin Insect Sci 14:32–39

    Article  PubMed  Google Scholar 

  • Luz C, Fargues J (1999) Dependence of the entomopathogenic fungus, Beauveria bassiana, on high humidity for infection of Rhodnius prolixus. Mycopathologia 146:33–41

    Article  CAS  PubMed  Google Scholar 

  • McKay DL, Blumberg JB (2002) The role of tea in human health: an update. J Am Coll Nutr 21:1–13

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Han BY, Zhang QH (2014) Probing behavior of Empoasca vitis (Homoptera: Cicadellidae) on resistant and susceptible cultivars of tea plants. J Insect Sci 14:223–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Morsello SC, Groves RL, Nault BA, Kennedy GG (2008) Temperature and precipitation affect seasonal patterns of dispersing tobacco Thrips, Frankliniella fusca, and onion Thrips, Thrips tabaci (Thysanoptera: Thripidae) caught on sticky traps. Environ Entomol 37:79–86

    Article  PubMed  Google Scholar 

  • Nafie E, Hathout T, Mokadem Al AS (2011) Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Braz J Plant Physiol 23:161–174

    Article  CAS  Google Scholar 

  • Narukawa M, Toda Y, Nakagita T et al (2014) L-Theanine elicits umami taste via the T1R1 + T1R3 umami taste receptor. Amino Acids 46:1583–1587

    Article  CAS  PubMed  Google Scholar 

  • Nobre AC, Rao A, Owen GN (2008) L-theanine, a natural constituent in tea, and its effect on mental state. Asia Pac J Clin Nutr 17:167–168

    CAS  PubMed  Google Scholar 

  • Orians C, Roche BM, Fritz RS (1996) The genetic basis for variation in the concentration of phenolic glycosides in Salix sericea: an analysis of heritability. Biochem Syst Ecol 24:719–724

    Article  CAS  Google Scholar 

  • Pimentel D (1991) Diversification of biological control strategies in agriculture. Crop Prot 10:243–253

    Article  Google Scholar 

  • Qin D, Zhang L, Xiao Q et al (2015) Clarification of the identity of the tea green leafhopper based on morphological comparison between Chinese and Japanese specimens. PLoS One 10:e0139202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qingshan X, Junyan Z, Shiqi Z et al (2017) Transcriptome profiling using single-molecule direct RNA sequencing approach for in-depth understanding of genes in secondary metabolism pathways of Camellia sinensis. Front Plant Sci 8:1205

    Article  Google Scholar 

  • Raguso RA, Agrawal AA, Douglas AE et al (2015) The raison d’être of chemical ecology. Ecology 96:617–630

    Article  PubMed  Google Scholar 

  • Rasmann S, Johnson MD, Agrawal AA (2009) Induced responses to herbivory and jasmonate in three milkweed species. J Chem Ecol 35:1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Reineke A, Hauck M (2012) Larval development of Empoasca vitis and Edwardsiana rosae (Homoptera: Cicadellidae) at different temperatures on grapevine leaves. J Appl Entomol 136:656–664

    Article  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB et al (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Chang Hum Health 2:90–104

    Article  Google Scholar 

  • Sáenz-Navajas M-P, Campo E, Fernández-Zurbano P et al (2010) An assessment of the effects of wine volatiles on the perception of taste and astringency in wine. Food Chem 121:1139–1149

    Article  CAS  Google Scholar 

  • Saijo R (1980) Effect of shade treatment on biosynthesis of catechins in tea plants. Plant Cell Physiol 21:989–998

    CAS  Google Scholar 

  • Sarker M, Mukhopadhyay A (2006) Studies on salivary and midgut enzymes of a major sucking pest of tea, Helopeltis theivora (Heteroptera: Miridae) from Darjeeling Plains, India. J Ent Res Soc 8:27–36

    Google Scholar 

  • Schwieterman ML, Colquhoun TA, Jaworski EA et al (2014) Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS One 9:e88446–e88412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaha S, Yadava R, Boruab PK (2014) Biochemical Defence mechanism in Camellia sinensis against Helopeltis theivora. Int J Plant Anim Environ Sci 4:246–253

    Google Scholar 

  • Shao W, Powell C, Clifford MN (1995) The analysis by HPLC of green, black and Pu'er teas produced in Yunnan. J Sci Food Agric 69:535–540

    Article  CAS  Google Scholar 

  • Sharp DC, Townsend MS, Qian Y, Shellhammer TH (2014) Effect of harvest maturity on the chemical composition of Cascade and Willamette hops. J Am Soc Brew Chem 72:231–238

    CAS  Google Scholar 

  • Shi LQ, Zeng ZH, Huang HS et al (2015) Identification of Empoasca onukii (Hemiptera: Cicadellidae) and monitoring of its populations in the tea plantations of South China. J Econ Entomol 108:1025–1033

    Article  PubMed  Google Scholar 

  • Shiojiri K, Ozawa R, Kugimiya S et al (2010) Herbivore-specific, density-dependent induction of plant volatiles: honest or “cry wolf” signals? PLoS One 5:e12161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X-L, Wang G-C, Cai X-M et al (2010) The tea weevil, Myllocerinus aurolineatus, is attracted to volatiles induced by conspecifics. J Chem Ecol 36:388–395

    Article  CAS  PubMed  Google Scholar 

  • Sun X-L, Wang G-C, Gao Y et al (2014) Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths. J Chem Ecol 40:1080–1089

    Article  CAS  PubMed  Google Scholar 

  • Taiwan Bureau of Productive Industries (1933) Issen en no kōkyū cha. Taiwan no chagyō 16(1):30

    Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Article  Google Scholar 

  • Tanaka T, Mine C, Watarumi S et al (2009) Production of Theaflavins and Theasinensins during tea fermentation. In: Biologically active natural products. American Chemical Society, Washington, DC, pp 188–196

    Google Scholar 

  • Thacker JI, Thieme T, Dixon AFG (1997) Forecasting of periodic fluctuations in annual abundance of the bean aphid: the role of density dependence and weather. J Appl Entomol 121:137–145

    Article  Google Scholar 

  • The Good Scents Company Flavor and Fragrance Information Catalog. In: http://www.thegoodscentscompany.com/allprod.html . Accessed 7 Sept 2017

  • Tieman D, Bliss P, McIntyre LM et al (2012) The chemical interactions underlying tomato flavor preferences. Curr Biol 22:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Tjallingii WF, Esch TH (1993) Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol Entomol 18:317–328

    Article  Google Scholar 

  • Tom (2015) DMS “Cha Nang Ngam” Oriental Beauty Oolong Tea - North Thailand’s “Dong Fang Mei Ren.” In: Siam Tea Blog. http://siamteas.com/2015/05/28/dms-cha-nang-ngam-oriental beauty-oolong-tea-north-thailands-dong-fang-mei-ren/ . Accessed 4 Oct 2017

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Ul Hassan MN, Zainal Z, Ismail I (2015) Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J 13:727–739

    Article  CAS  PubMed  Google Scholar 

  • Unsicker SB, Gershenzon J, Köllner TG (2015) Beetle feeding induces a different volatile emission pattern from black poplar foliage than caterpillar herbivory. Plant Signal Behav 10:e987522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaast P, Bertrand B, Perriot JJ et al (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86:197–204

    Article  CAS  Google Scholar 

  • Velayutham P, Babu A, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15:1840–1850

    Article  PubMed Central  Google Scholar 

  • Vuong QV, Bowyer MC, Roach PD (2011) L-Theanine: properties, synthesis and isolation from tea. J Sci Food Agric 91:1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wang D, Li C-F, Ma C-L, Chen L (2015) Novel insights into the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by strategic transcriptomic comparisons. Sci Hortic 192:429–440

    Article  Google Scholar 

  • Wang Y-N, Tang L, Hou Y et al (2016) Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Funct Integr Genomics 16:383–398

    Article  CAS  PubMed  Google Scholar 

  • Writer S (2017) “Relying on Heaven”: natural farming and “Eco-tea” in Taiwan. In: Lewis T (ed) Green Asia. Taylor & Francis, New York, pp 51–65

    Google Scholar 

  • Yang H, Xie S, Wang L et al (2011) Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper. Sci Hortic 130:476–481

    Article  CAS  Google Scholar 

  • Yang Z-W, Duan X-N, Jin S et al (2013) Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants. J Chem Ecol 39:744–751

    Article  CAS  PubMed  Google Scholar 

  • Yang T-B, Liu J, Yuan L-Y et al (2017) Molecular identification of spiders preying on Empoasca vitis in a tea plantation. Sci Rep 7:7784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye G-Y, Xiao Q, Chen M et al (2014) Tea: biological control of insect and mite pests in China. Biol Control 68:73–91

    Article  Google Scholar 

  • Yu P, Yeo AS-L, Low M-Y, Zhou W (2014) Identifying key non-volatile compounds in ready-to drink green tea and their impact on taste profile. Food Chem 155:9–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-N, Yin J-F, Chen J-X et al (2016) Improving the sweet aftertaste of green tea infusion with tannase. Food Chem 192:470–476

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li Y, Lv Y et al (2017) Influence of brewing conditions on taste components in Fuding white tea infusions. J Sci Food Agric 97:2826–2833

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Lawrence Zhang and David Campbell for information about the origins of Eastern Beauty oolong tea, as well as Clarissa Wei, Lew Perin, and Michael Coffee for advice on the translation of tea names.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin M. Orians .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scott, E.R., Orians, C.M. (2018). Differential Changes in Tea Quality as Influenced by Insect Herbivory. In: Han, WY., Li, X., Ahammed, G. (eds) Stress Physiology of Tea in the Face of Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-2140-5_10

Download citation

Publish with us

Policies and ethics