Skip to main content

Modifications of Photocatalysts by Doping Methods

  • Chapter
  • First Online:
Book cover Photocatalysis

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 100))

  • 2994 Accesses

Abstract

This chapter presents a review of novel achievements in the doping modification of TiO2 photocatalytic systems aimed at enhancing TiO2 applications in the areas of energy conversion and environmental cleanup. Herein we studied the synthesis, physical properties, as well as synergism of modified TiO2. Based on the studies reported in the literature, metal and nonmetal doping- and co-doping-modified TiO2 are very effective systems to extend the activating spectra to the visible range. Therefore, doping-modified TiO2 play an important role in the development of efficient photocatalysts for future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O'Regan B, Gratzel M (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  CAS  Google Scholar 

  2. Ito S, Chen P, Comte P et al (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovolt Res Appl 15(7):603–612

    Article  CAS  Google Scholar 

  3. Ito S, Zakeeruddin SM, Humphry-Baker R et al (2006) High-efficiency organic-dye-sensitized solar cells controlled by Nanocrystalline-TiO2 electrode thickness. Adv Mater 18(9):1202–1205

    Article  CAS  Google Scholar 

  4. Kuang D, Brillet J, Chen P et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6):1113–1116

    Article  CAS  PubMed  Google Scholar 

  5. Nazeeruddin MK, Humphry-Baker R, Liska P et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987

    Article  CAS  Google Scholar 

  6. Nazeeruddin MK, Pechy P, Renouard T et al (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123(8):1613–1624

    Article  CAS  PubMed  Google Scholar 

  7. Wang P, Zakeeruddin SM, Comte P et al (2003) Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. J Phys Chem B 107(51):4336–14341

    Google Scholar 

  8. Zukalova M, Zukal A, Kavan L et al (2005) Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett 5(9):1789–1792

    Article  CAS  PubMed  Google Scholar 

  9. Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585

    Article  CAS  Google Scholar 

  10. Zhu JF, Chen F, Zhang J et al (2006) Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem 180(1):196–204

    Article  CAS  Google Scholar 

  11. Yang Y, Tian CX (2012) Effects of calcining temperature on photocatalytic activity of Fe-doped sulfated Titania. Photochem Photobiol 88(4):816–823

    Article  CAS  PubMed  Google Scholar 

  12. Shi JW, Zheng JT, Hu Y et al (2007) Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2. Meter Chem Phys 106(2):247–249

    Article  CAS  Google Scholar 

  13. Zhu J, Zheng W, He B et al (2004) Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem 216(1):35–43

    Article  CAS  Google Scholar 

  14. Tong T, Zhang J, Tian B et al (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155(3):572–579

    Article  CAS  PubMed  Google Scholar 

  15. Zhu JF, Deng ZG, Chen F et al (2006) Hydrothermal doping method for preparation of Cr3+- TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B Environ 62(3):329–335

    Article  CAS  Google Scholar 

  16. Anpo M, Takeuchi MJ (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216(1):505–516

    Article  CAS  Google Scholar 

  17. Hamzah N, Nordin NM, Nadzri AHA et al (2012) Enhanced activity of Ru/TiO2 catalyst using bisupport bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media. Appl Catal A: General 419:133–141

    Article  CAS  Google Scholar 

  18. Panagiotopoulou P, Kondarides DI, Verykios XEJ (2010) Mechanistic study of the selective methanation of CO OVER ru/TiO2 catalyst: identification of active surface species and reaction pathways. J Phys Chem C 115(4):1220–1230

    Article  CAS  Google Scholar 

  19. Yuan S, Chen Y, Shi LY et al (2007) Synthesis and characterization of Ce-doped mesoporous anatase with long-range ordered mesostructure. Mater Lett 61(21):4283–4286

    Article  CAS  Google Scholar 

  20. Tong TZ, Zhang JL, Tian BZ et al (2007) Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. J Colloid Interface Sci 315:382–388

    Article  CAS  PubMed  Google Scholar 

  21. Xing MY, Qi DY, Zhang JL et al (2011) One-step hydrothermal method to prepare carbon and lanthanum co-doped TiO2 nanocrystals with exposed {001} facets and their high UV and visible-light photocatalytic activity. Chem Eur J 17(41):11432–11436

    Article  CAS  PubMed  Google Scholar 

  22. Yuan S, Sheng QR, Zhang JL et al (2005) Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous Mesoporous Mater 79(1):93–99

    Article  CAS  Google Scholar 

  23. Gao HT, Liu WC, Lu B et al (2012) Photocatalytic activity of La, Y co-doped TiO2 nanoparticles synthesized by ultrasonic assisted sol–gel method. J Nanosci Nanotechnol 12(5):3959–3965

    Article  CAS  PubMed  Google Scholar 

  24. Tian B, Li C, Gu F et al (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151(1):220–227

    Article  CAS  Google Scholar 

  25. Liu H, Wu Y, Zhang J (2011) A new approach toward carbon-modified vanadium-doped titanium dioxide photocatalysts. ACS Appl Mater Interfaces 3(5):1757–1764

    Article  CAS  PubMed  Google Scholar 

  26. Lin WC, Lin YJ (2012) Effect of vanadium (IV)-doping on the visible light-induced catalytic activity of titanium dioxide catalysts for methylene blue degradation. Environ Eng Sci 29(6):447–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sajjad S, Leghari SAK, Chen F et al (2010) Bismuth-doped ordered mesoporous TiO2: visible-light catalyst for simultaneous degradation of phenol and chromium. Chem Eur J 16:13795–13804

    Article  CAS  PubMed  Google Scholar 

  28. Wang WJ, Zhang JL, Chen F et al (2010) Catalysis of redox reactions by Ag@ TiO2 and Fe3+-doped Ag@ TiO2 core–shell type nanoparticles. Res Chem Intermed 36(2):163–172

    Article  CAS  Google Scholar 

  29. Yuan XL, Zhang JL, Anpo M et al (2010) Synthesis of Fe3+- doped ordered mesoporous TiO2 with enhanced visible light photocatalytic activity and highly crystallized anatase wall. Res Chem Intermed 36(1):83–93

    Article  CAS  Google Scholar 

  30. Cong Y, Tian BZ, Zhang JL (2011) Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping. Appl Catal B Environ 101(3):376–381

    Article  CAS  Google Scholar 

  31. Zhang J, Wu Y, Xing M et al (2010) Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci 3(6):715–726

    Article  CAS  Google Scholar 

  32. Zuo F, Wang L, Wu T et al (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132(34):11856–11857

    Article  CAS  PubMed  Google Scholar 

  33. Xing M, Fang W, Nasir M et al (2013) Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297:236–243

    Article  CAS  Google Scholar 

  34. Zheng Z, Huang B, Meng X et al (2013) Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem Commun 49(9):868–870

    Article  CAS  Google Scholar 

  35. Hoang S, Berglund SP, Hahn NT et al (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134(8):3659–3662

    Article  CAS  PubMed  Google Scholar 

  36. Xing M, Zhang J, Chen F et al (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun 47(17):4947–4949

    Article  CAS  Google Scholar 

  37. Liu GL, Han C, Pelaez M, Zhu DW, Liao SJ, Likodimos V, Ioannidis N, Kontos AG, Falaras P, Dunlop PSM, Byrne JA, Dionysiou DD (2012) Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles. Nanotechnology 23(29):294003

    Article  PubMed  CAS  Google Scholar 

  38. Selvam K, Swaminathan M (2012) Nano N-TiO2 mediated selective photocatalytic synthesis of quinaldines from nitrobenzenes. RSC Adv 2(7):2848–2855

    Article  CAS  Google Scholar 

  39. Zhang W, Yang B, Chen J (2012) Effects of calcination temperature on preparation of boron-doped TiO2 by sol-gel method. Int J Photoenergy 2012:1

    Google Scholar 

  40. Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  CAS  PubMed  Google Scholar 

  41. Cong Y, Zhang JL, Chen F et al (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111(19):6976–6982

    Article  CAS  Google Scholar 

  42. Xing M, Zhang J, Chen F et al (2009) New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl Catal B Environ 89(3):563–569

    Article  CAS  Google Scholar 

  43. Lu XN, Tian BZ, Chen F et al (2010) Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity. Thin Solid Films 519(1):111–116

    Article  CAS  Google Scholar 

  44. Wu YM, Xing MY, Zhang JL et al (2010) Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant. Appl Catal B Environ 97(1):182–189

    Article  CAS  Google Scholar 

  45. Tang YB, Yin LC, Yang Y et al (2012) Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano 6(3):1970–1978

    Article  CAS  PubMed  Google Scholar 

  46. Wang XD, Blackford M, Prince K et al (2012) Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity. ACS Appl Mater Interfaces 4(1):476–482

    Article  PubMed  CAS  Google Scholar 

  47. Wu YM, Zhang JL, Xiao L et al (2010) Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl Surf Sci 256(13):4260–4268

    Article  CAS  Google Scholar 

  48. Parayil SK, Kibombo HS, Wu CM et al (2012) Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int J Hydrog Energy 37(10):8257–8267

    Article  CAS  Google Scholar 

  49. Zhong J, Chen F, Zhang JL (2009) Carbon-deposited TiO2: synthesis, characterization, and visible photocatalytic performance. J Phys Chem C 114(2):933–939

    Article  CAS  Google Scholar 

  50. Xing MY, Qi DY, Zhang JL et al (2012) Super-hydrophobic fluorination mesoporous MCF/TiO2 composite as a high-performance photocatalyst. J Catal 294:37–46

    Article  CAS  Google Scholar 

  51. Tosoni S, Fernandez Hevia D, González Díaz Ó et al (2012) Origin of optical excitations in fluorine-doped titania from response function theory: relevance to photocatalysis. J Phys Chem Lett 3(16):2269–2274

    Article  CAS  PubMed  Google Scholar 

  52. Liu SW, Yu JG, Cheng B et al (2012) Fluorinated semiconductor photocatalysts: tunable synthesis and unique properties. Adv Colloid Interf Sci 173:35–53

    Article  CAS  Google Scholar 

  53. Seo H, Baker LR, Hervier A et al (2010) Generation of highly n-type titanium oxide using plasma fluorine insertion. Nano Lett 11(2):751–756

    Article  PubMed  CAS  Google Scholar 

  54. Kuwahara Y, Maki K, Matsumura Y et al (2009) Hydrophobic modification of a mesoporous silica surface using a fluorine-containing silylation agent and its application as an advantageous host material for the TiO2 photocatalyst. J Phys Chem C 113(4):1552–1559

    Article  CAS  Google Scholar 

  55. Xu P, Xu T, Lu J et al (2010) Visible-light-driven photocatalytic S-and C-codoped meso/nanoporous TiO2. Energy Environ Sci 3(8):1128–1134

    Article  CAS  Google Scholar 

  56. Niu Y, Xing M, Tian B et al (2012) Improving the visible light photocatalytic activity of nano-sized titanium dioxide via the synergistic effects between sulfur doping and sulfation. Appl Catal B Environ 115–116:253–260

    Article  CAS  Google Scholar 

  57. Bidaye P, Khushalani D, Fernandes JB (2010) A simple method for synthesis of S-doped TiO2 of high photocatalytic activity. Catal Lett 134(1–2):169–174

    Article  CAS  Google Scholar 

  58. Dozzi MV, Livraghi S, Giamello E et al (2011) Photocatalytic activity of S-and F-doped TiO2 in formic acid mineralization. Photochem Photobiol Sci 10(3):343–349

    Article  CAS  PubMed  Google Scholar 

  59. He HY (2010) Solvothermal synthesis and photocatalytic activity of S-doped TiO2 and TiS2 powders. Res Chem Intermed 36(2):155–161

    Article  CAS  Google Scholar 

  60. Yang K, Dai Y, Huang BJ (2007) Understanding photocatalytic activity of S-and P-doped TiO2 under visible light from first-principles. J Phys Chem C 111(51):18985–18994

    Article  CAS  Google Scholar 

  61. Di Valentin C, Pacchioni G, Selloni A et al (2005) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109(23):11414–11419

    Article  PubMed  CAS  Google Scholar 

  62. Livraghi S, Paganini MC, Giamello E et al (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128(49):15666–15671

    Article  CAS  PubMed  Google Scholar 

  63. Caratto V, Setti L, Campodonico S et al (2012) Synthesis and characterization of nitrogen-doped TiO2 nanoparticles prepared by sol–gel method. J Sol-Gel Sci Technol 63(1):16–22

    Article  CAS  Google Scholar 

  64. Dong F, Zhao W, Wu Z et al (2009) Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition. J Hazard Mater 162(2):763–770

    Article  CAS  PubMed  Google Scholar 

  65. Hao H, Zhang J (2009) The study of iron (III) and nitrogen co-doped mesoporous TiO2 photocatalysts: synthesis, characterization and activity. Microporous Mesoporous Mater 121(1):52–57

    Article  CAS  Google Scholar 

  66. Jagadale TC, Takale SP, Sonawane RS et al (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol−gel method. J Phys Chem C 112(37):14595–14602

    Article  CAS  Google Scholar 

  67. Kim MS, Liu G, Nam WK et al (2011) Preparation of porous carbon-doped TiO2 film by sol–gel method and its application for the removal of gaseous toluene in the optical fiber reactor. J Ind Eng Chem 17(2):223–228

    Article  CAS  Google Scholar 

  68. Neville EM, Mattle MJ, Loughrey D et al (2012) Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol–gel processes in the presence of melamine borate: reflections through photocatalysis. J Phys Chem C 116(31):16511–16521

    Article  CAS  Google Scholar 

  69. Gopal NO, Lo HH, Ke SC (2008) Chemical state and environment of boron dopant in B, N-codoped anatase TiO2 nanoparticles: an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy. J Am Chem Soc 130(9):2760–2761

    Article  CAS  PubMed  Google Scholar 

  70. Czoska AM, Livraghi S, Paganini MC et al (2011) The nitrogen–boron paramagnetic center in visible light sensitized N–B co-doped TiO2. Experimental and theoretical characterization. Phys Chem Chem Phys 13(1):136–143

    Article  CAS  PubMed  Google Scholar 

  71. Li Y, Ma G, Peng S et al (2008) Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. Appl Surf Sci 254(21):6831–6836

    Article  CAS  Google Scholar 

  72. Liu G, Yang HG, Wang X et al (2009) Visible light responsive nitrogen doped anatase TiO2sheets with dominant {001} facets derived from TiN. J Am Chem Soc 131(36):12868–12869

    Article  CAS  PubMed  Google Scholar 

  73. Wang DH, Jia L, Wu XL et al (2012) One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4(2):576–584

    Article  CAS  PubMed  Google Scholar 

  74. Zuo F, Bozhilov K, Dillon RJ et al (2012) Active facets on titanium (III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem 124(25):6327–6330

    Article  Google Scholar 

  75. Zhao L, Chen X, Wang X et al (2010) One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22(30):3317–3321

    Article  CAS  PubMed  Google Scholar 

  76. Liu G, Zhao Y, Sun C et al (2008) Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew Chem Int Ed 47(24):4516–4520

    Article  CAS  Google Scholar 

  77. Xing MY, Li WK, Wu YM et al (2011) Formation of new structures and their synergistic effects in boron and nitrogen codoped TiO2 for enhancement of photocatalytic performance. J Phys Chem C 115(16):7858–7865

    Article  CAS  Google Scholar 

  78. Hopper EM, Sauvage F, Chandiran AK et al (2012) Electrical properties of Nb-, Ga-, and Y- substituted Nanocrystalline Anatase TiO2 prepared by hydrothermal synthesis. J Am Ceram Soc 95(10):3192–3196

    Article  CAS  Google Scholar 

  79. Cong Y, Zhang J, Chen F et al (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). J Phys Chem C 111(28):10618–10623

    Article  CAS  Google Scholar 

  80. Zielińska A, Kowalska E, Sobczak JW et al (2010) Silver-doped TiO2prepared by microemulsion method: surface properties, bio-and photoactivity. Sep Purif Technol 72(3):309–318

    Article  CAS  Google Scholar 

  81. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42(40):4908–4911

    Article  CAS  Google Scholar 

  82. Wu Y, Liu H, Zhang J et al (2009) Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J Phys Chem C 113(33):14689–14695

    Article  CAS  Google Scholar 

  83. Xing M, Zhang J, Chen F (2009) Photocatalytic performance of N-doped TiO2 adsorbed with Fe3+ ions under visible light by a redox treatment. J Phys Chem C 113(29):12848–12853

    Article  CAS  Google Scholar 

  84. Yu JC, Yu J, Ho W et al (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14(9):3808–3816

    Article  CAS  Google Scholar 

  85. Goswami P, Ganguli JN (2012) Evaluating the potential of a new titania precursor for the synthesis of mesoporous Fe-doped titania with enhanced photocatalytic activity. Mater Res Bull 47(8):2077–2084

    Article  CAS  Google Scholar 

  86. Justicia I, Ordejón P, Canto G et al (2002) Designed self-doped titanium oxide thin films for efficient visible-light Photocatalysis. Adv Mater 14(19):1399–1402

    Article  CAS  Google Scholar 

  87. Cao Y, Yang W, Zhang W et al (2004) Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J Chem 28(2):218–222

    Article  CAS  Google Scholar 

  88. Kurtz SR, Gordon RG (1987) Chemical vapor deposition of doped TiO2 thin films. Thin Solid Films 147(2):167–176

    Article  CAS  Google Scholar 

  89. Su Y, Zhang X, Han S et al (2007) F–B-codoping of anodized TiO2 nanotubes using chemical vapor deposition. Electrochem Commun 9(9):2291–2298

    Article  CAS  Google Scholar 

  90. Navío J, Colón G, Litter MI et al (1996) Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron (III) acetylacetonate. J Mol Catal A Chem 106(3):267–276

    Article  Google Scholar 

  91. Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B Environ 90(3):595–602

    Article  CAS  Google Scholar 

  92. Surolia PK, Tayade RJ, Jasra RV (2007) Effect of anions on the photocatalytic activity of Fe (III) salts impregnated TiO2. Ind Eng Chem Res 46(19):6196–6203

    Article  CAS  Google Scholar 

  93. Di Paola A, Marci G, Palmisano L et al (2002) Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem B 106(3):637–645

    Article  CAS  Google Scholar 

  94. Chen X, Liu L, Peter YY et al (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750

    Article  CAS  PubMed  Google Scholar 

  95. Naldoni A, Allieta M, Santangelo S et al (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134(18):7600–7603

    Article  CAS  PubMed  Google Scholar 

  96. Xia T, Zhang C, Oyler NA et al (2013) Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 25(47):6905–6910

    Article  CAS  PubMed  Google Scholar 

  97. Chen X, Liu L, Liu Z et al (2013) Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 3

    Google Scholar 

  98. Khan SU, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590):2243–2245

    Article  CAS  PubMed  Google Scholar 

  99. In S, Orlov A, Berg R et al (2007) Effective visible light-activated B-doped and B, N-codoped TiO2photocatalysts. J Am Chem Soc 129(45):13790–13791

    Article  CAS  PubMed  Google Scholar 

  100. Xia T, Zhang W, Murowchick JB et al (2013) A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv Energy Mater 3(11):1516–1523

    Article  CAS  Google Scholar 

  101. Wang Z, Yang C, Lin T et al (2013) H-doped black Titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23(43):5444–5450

    Article  CAS  Google Scholar 

  102. Kurosu H, Yamanobe T (2012) A specialist periodical report on nuclear magnetic resonance (2011/8) synthetic macromolecules. Specialist Periodical Reports- Nucl Magn Res 41:386

    CAS  Google Scholar 

  103. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679

    Article  Google Scholar 

  104. Zhang J, Xu LJ, Zhu ZQ et al (2015) Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Mater Res Bull 70:358–364

    Article  CAS  Google Scholar 

  105. Zhu J, Zheng W, He B et al (2004) Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem 216(1):35–43

    Article  CAS  Google Scholar 

  106. Zhu J, Chen F, Zhang J et al (2006) Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem 180(1):196–204

    Article  CAS  Google Scholar 

  107. Xiao L, Zhang J, Cong Y et al (2006) Synergistic effects of doped Fe3+ and deposited Au on improving the photocatalytic activity of TiO2. Catal Lett 111(3):207–211

    Article  CAS  Google Scholar 

  108. Wu Y, Zhang J, Xiao L et al (2009) Preparation and characterization of TiO2photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Appl Catal B Environ 88(3):525–532

    Article  CAS  Google Scholar 

  109. You X, Chen F, Zhang J et al (2005) A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal Lett 102(3):247–250

    Article  CAS  Google Scholar 

  110. Wang W, Zhang J, Chen F et al (2008) Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles. J Colloid Interface Sci 323(1):182–186

    Article  CAS  PubMed  Google Scholar 

  111. Jaiswal R, Patel N, Kothari DC et al (2012) Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen. Appl Catal B Environ 126:47–54

    Article  CAS  Google Scholar 

  112. Sun L, Zhao X, Cheng X et al (2012) Synergistic effects in La/N co-doped TiO2 anatase (101) surface correlated with enhanced visible-light photocatalytic activity. Langmuir 28(13):5882–5891

    Article  CAS  PubMed  Google Scholar 

  113. Yuan S, Sheng Q, Zhang J et al (2006) Synthesis of Pd nanoparticles in La-doped mesoporous titania with polycrystalline framework. Catal Lett 107(1):19–24

    Article  CAS  Google Scholar 

  114. Chen QL, Wang Y, Zhong CY et al (2011) Effect of Co-doped La3+/halogen on visible light photocatalytic activity of TiO2. Trans Tech Publ 239:1923–1928

    Google Scholar 

  115. Anandan S, Ikuma Y, Murugesan V (2012) Highly active rare-earth-metal La-doped photocatalysts: fabrication, characterization, and their photocatalytic activity. Int J Photoenerg 2012:1

    Article  CAS  Google Scholar 

  116. Ma Y, Xing M, Zhang J et al (2012) Synthesis of well ordered mesoporous Yb, N co-doped TiO2 with superior visible photocatalytic activity. Microporous Mesoporous Mater 156:145–152

    Article  CAS  Google Scholar 

  117. Ma Y, Zhang J, Tian B et al (2012) Synthesis of visible light-driven Eu, N co-doped TiO2 and the mechanism of the degradation of salicylic acid. Res Chem Intermed 38(8):1947–1960

    Article  CAS  Google Scholar 

  118. Ma Y, Zhang J, Tian B et al (2010) Synthesis and characterization of thermally stable Sm, N co-doped TiO2with highly visible light activity. J Hazard Mater 182(1):386–393

    Article  CAS  PubMed  Google Scholar 

  119. Zhao Y, Liu J, Shi L et al (2011) Solvothermal preparation of Sn4+ doped anatase TiO2nanocrystals from peroxo-metal-complex and their photocatalytic activity. Appl Catal B Environ 103(3):436–443

    Article  CAS  Google Scholar 

  120. Xiufeng Z, Juan L, Lianghai L et al (2011) Preparation of crystalline Sn-doped TiO2and its application in visible-light photocatalysis. J Nanomater 2011:47

    Article  CAS  Google Scholar 

  121. Lu G, Linsebigler A, Jr Y et al (1994) Ti3+ defect sites on TiO2(110): production and chemical detection of active sites. J Phys Chem 98(45):11733–11738

    Article  CAS  Google Scholar 

  122. Sasikala R, Shirole A, Sudarsan V et al (2009) Highly dispersed phase of SnO2 on TiO2nanoparticles synthesized by polyol-mediated route: photocatalytic activity for hydrogen generation. Int J Hydrog Energy 34(9):3621–3630

    Article  CAS  Google Scholar 

  123. Nakamura I, Negishi N, Kutsuna S et al (2000) Role of oxygen vacancy in the plasma-treated TiO2photocatalyst with visible light activity for NO removal. J Mol Catal A Chem 161(1):205–212

    Article  CAS  Google Scholar 

  124. Linsebigler AL, Lu G, Jr Y (1995) Photocatalysis on TiO2surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  125. Nagaveni K, Hegde MS, Ravishankar N et al (2004) Synthesis and structure of nanocrystalline TiO2with lower band gap showing high photocatalytic activity. Langmuir 20(7):2900–2907

    Article  CAS  PubMed  Google Scholar 

  126. Kamisaka H, Adachi T, Yamashita K (2005) Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides. J Chem Phys 123(8):084704

    Article  PubMed  CAS  Google Scholar 

  127. Bai H, Liu Z, Sun DD (2012) Facile preparation of monodisperse, carbon doped single crystal rutile TiO2nanorod spheres with a large percentage of reactive (110) facet exposure for highly efficient H2 generation. J Mater Chem 22(36):18801–18807

    Article  CAS  Google Scholar 

  128. Yu J, Dai G, Xiang Q et al (2011) Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2sheets with exposed {001} facets. J Mater Chem 21(4):1049–1057

    Article  CAS  Google Scholar 

  129. Lin X, Rong F, Ji X et al (2011) Carbon-doped mesoporous TiO2film and its photocatalytic activity. Microporous Mesoporous Mater 142(1):276–281

    Article  CAS  Google Scholar 

  130. Czoska AM, Livraghi S, Chiesa M et al (2008) The nature of defects in fluorine-doped TiO2. J Phys Chem C 112(24):8951–8956

    Article  CAS  Google Scholar 

  131. Fattori A, Peter LM, Wang H et al (2010) Fast hole surface conduction observed for indoline sensitizer dyes immobilized at fluorine-doped tin oxide− TiO2 surfaces. J Phys Chem C 114(27):11822–11828

    Article  CAS  Google Scholar 

  132. Shifu C, Yunguang Y, Wei L (2011) Preparation, characterization and activity evaluation of TiN/F-TiO2 photocatalyst. J Hazard Mater 186(2):1560–1567

    Article  PubMed  CAS  Google Scholar 

  133. Ma HL, Zhang DH, Win SZ et al (1996) Electrical and optical properties of F-doped textured SnO2 films deposited by APCVD. Sol Energy Mater Sol Cells 40(4):371–380

    Article  CAS  Google Scholar 

  134. Minami T (2000) New n-type transparent conducting oxides. MRS Bull 25(8):38–44

    Article  CAS  Google Scholar 

  135. Rakhshani AE, Makdisi Y, Ramazaniyan HA (1998) Electronic and optical properties of fluorine-doped tin oxide films. J Appl Phys 83(2):1049–1057

    Article  CAS  Google Scholar 

  136. Cui Y, Du H, Wen LS et al (2009) Investigation of electronic structures of F-doped TiO2 by first-principles calculation. Trans Tech Publ 620:647–650

    Google Scholar 

  137. Liu B, Gu M, Liu X et al (2010) First-principles study of fluorine-doped zinc oxide. Appl Phys Lett 97(12):122101

    Article  CAS  Google Scholar 

  138. Gonzalez-Hernandez R, Martinez AI, Falcony C et al (2010) Study of the properties of undoped and fluorine doped zinc oxide nanoparticles. Mater Lett 64(13):1493–1495

    Article  CAS  Google Scholar 

  139. Zhao W, Ma W, Chen C et al (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x B x under visible irradiation. J Am Chem Soc 126(15):4782–4783

    Article  CAS  PubMed  Google Scholar 

  140. Moon SC, Mametsuka H, Suzuki E et al (1998) Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water. Catal Today 45(1):79–84

    Article  CAS  Google Scholar 

  141. Chen D, Yang D, Wang Q et al (2006) Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res 45(12):4110–4116

    Article  CAS  Google Scholar 

  142. Jung KY, Park SB, Ihm SK (2004) Local structure and photocatalytic activity of B2O3–SiO2/TiO2 ternary mixed oxides prepared by sol–gel method. Appl Catal B Environ 51(4):239–245

    Article  CAS  Google Scholar 

  143. Xing M, Wu Y, Zhang J et al (2010) Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2for the degradation of MO. Nanoscale 2(7):1233–1239

    Article  CAS  PubMed  Google Scholar 

  144. Wu Y, Xing M, Zhang J (2011) Gel-hydrothermal synthesis of carbon and boron co-doped TiO2and evaluating its photocatalytic activity. J Hazard Mater 192(1):368–373

    CAS  PubMed  Google Scholar 

  145. Naik B, Parida KM (2010) Solar light active photodegradation of phenol over a Fe x Ti1−xO2−yNy Nanophotocatalyst. Ind Eng Chem Res 49(18):8339–8346

    Article  CAS  Google Scholar 

  146. Wang W, Lu C, Ni Y et al (2012) Preparation and characterization of visible-light-driven N–F–Ta tri-doped TiO2 photocatalysts. Appl Surf Sci 258(22):8696–8703

    Article  CAS  Google Scholar 

  147. Cong Y, Chen F, Zhang J et al (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem Lett 35(7):800–801

    Article  CAS  Google Scholar 

  148. Gombac V, De Rogatis L, Gasparotto A et al (2007) TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem Phys 339(1):111–123

    Article  CAS  Google Scholar 

  149. Komai Y, Okitsu K, Nishimura R et al (2011) Visible light response of nitrogen and sulfur co-doped TiO2 photocatalysts fabricated by anodic oxidation. Catal Today 164(1):399–403

    Article  CAS  Google Scholar 

  150. Yang G, Xiao T, Sloan J et al (2011) Low-temperature synthesis of visible-light active fluorine/sulfur Co-doped mesoporous TiO2 microspheres. Chem Eur J 17(4):1096–1100

    Article  CAS  PubMed  Google Scholar 

  151. Wu Y, Xing M, Tian B et al (2010) Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chem Eng J 162(2):710–717

    Article  CAS  Google Scholar 

  152. Wei H, Wu Y, Lun N et al (2004) Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum. J Mater Sci 39(4):1305–1308

    Article  CAS  Google Scholar 

  153. Khan R, Kim SW, Kim TJ et al (2008) Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles. Mater Chem Phys 112(1):167–172

    Article  CAS  Google Scholar 

  154. Wei F, Zhu T (2007) Preparation and photocatalytic property of S and Fe co-doped TiO2 nanoparticles. Appl Chem Ind 36:421–424

    Google Scholar 

  155. Devi LG, Nagaraj B, Rajashekhar KE (2012) Synergistic effect of Ag deposition and nitrogen doping in TiO2 for the degradation of phenol under solar irradiation in presence of electron acceptor. Chem Eng J 181:259–266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J. (2018). Modifications of Photocatalysts by Doping Methods. In: Photocatalysis. Lecture Notes in Chemistry, vol 100. Springer, Singapore. https://doi.org/10.1007/978-981-13-2113-9_8

Download citation

Publish with us

Policies and ethics