Photocatalysis pp 173-196 | Cite as

The Preparation and Applications of g-C3N4/TiO2 Heterojunction Catalysts

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)


In the last few years, because of the better catalytic ability of heterojunction catalysts than that of single-component catalysts, more and more attention has been paid on the research of heterojunction catalysts. Various types of heterojunction catalysts have been reported like Bi2O3/Bi2WO6, WO3/BiVO4, SnO2/TiO2, CdS/TiO2, g-C3N4/TiO2, and Ta3N5/Pt/IrO2. Among them, the heterojunction catalyst g-C3N4/TiO2 has been researched tremendously recently because of its high activity, high thermal and chemical stability, and well-matched energy structure. Many approaches have been developed for its synthesis, such as hydrothermal growth of TiO2 on g-C3N4, ball milling of g-C3N4 and TiO2, and so on. In this chapter, the recent researches on the synthesis of g-C3N4/TiO2 catalyst were summarized. In addition, the applications of g-C3N4/TiO2 catalyst in the field of photocatalysis were introduced in detail.


g-C3N4 TiO2 Heterojunction Multicomponent Photocatalyst 


  1. 1.
    Yang L, Wang L, Xing M et al (2016) Silica nanocrystal/graphene composite with improved photoelectric and photocatalytic performance. Appl Catal B Environ 180:106–112CrossRefGoogle Scholar
  2. 2.
    Cheng C, Tan X, Lu D et al (2015) Carbon-dot-sensitized, nitrogen-doped TiO2 in mesoporous silica for water decontamination through nonhydrophobic enrichment–degradation mode. Chem Eur J 21(49):17944–17950CrossRefGoogle Scholar
  3. 3.
    Cheng C, Lu D, Shen B et al (2016) Mesoporous silica-based carbon dot/TiO2 photocatalyst for efficient organic pollutant degradation. Microporous Mesoporous Mater 226:79–87CrossRefGoogle Scholar
  4. 4.
    Liu F, Yu J, Tu G et al (2017) Carbon nitride coupled Ti-SBA15 catalyst for visible-light-driven photocatalytic reduction of Cr (VI) and the synergistic oxidation of phenol. Appl Catal B Environ 201:1–11CrossRefGoogle Scholar
  5. 5.
    Yu J, Wang S, Low J et al (2013) Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15(39):16883–16890CrossRefGoogle Scholar
  6. 6.
    Xing M, Shen F, Qiu B et al (2014) Highly-dispersed boron-doped graphene nanosheets loaded with TiO2 nanoparticles for enhancing CO2 photoreduction. Sci Rep 4:6341CrossRefGoogle Scholar
  7. 7.
    Ansari MB, Min BH, Mo YH et al (2011) CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides. Green Chem 13(6):1416–1421CrossRefGoogle Scholar
  8. 8.
    Dong C, Xing M, Zhang J (2016) Economic hydrophobicity triggering of CO2 photoreduction for selective CH4 generation on noble-metal-free TiO2–SiO2. J Phys Chem Lett 7(15):2962CrossRefGoogle Scholar
  9. 9.
    Xing M, Zhang J, Chen F et al (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun 47:4947CrossRefGoogle Scholar
  10. 10.
    Dong C, Song H, Zhou Y et al (2016) Sulfur nanoparticles in situ growth on TiO2 mesoporous single crystals with enhanced solar light photocatalytic performance. RSC Adv 6(81):77863–77869CrossRefGoogle Scholar
  11. 11.
    Qiu B, Xing M, Yi Q, Zhang J (2015) Angew Chem 127(36):10667CrossRefGoogle Scholar
  12. 12.
    Ashkarran AA, Ghavamipour M, Hamidinezhad H et al (2015) Enhanced visible light-induced hydrophilicity in sol–gel-derived ag–TiO2 hybrid nanolayers. Res Chem Intermed 41(10):7299–7311CrossRefGoogle Scholar
  13. 13.
    An L, Wang G, Cheng Y et al (2015) Ultrasonic-assisted synthesis of visible-light-driven TiO2/Bi2O3 nanocomposite photocatalysts: characterization, properties and azo dye removal application. Res Chem Intermed 41(10):7449CrossRefGoogle Scholar
  14. 14.
    Qiu B, Xing M, Zhang J (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136(16):5852–5855CrossRefGoogle Scholar
  15. 15.
    Kitano S, Murakami N, Ohno T et al (2013) Bifunctionality of Rh3+ modifier on TiO2 and working mechanism of Rh3+/TiO2 photocatalyst under irradiation of visible light. J Phys Chem C 117(21):11008–11016CrossRefGoogle Scholar
  16. 16.
    Shiraishi Y, Takeda Y, Sugano Y et al (2011) Highly efficient photocatalytic dehalogenation of organic halides on TiO2 loaded with bimetallic Pd–Pt alloy nanoparticles. Chem Commun 47(27):7863–7865CrossRefGoogle Scholar
  17. 17.
    Tsukamoto D, Shiro A, Shiraishi Y et al (2012) Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with au–ag bimetallic alloy nanoparticles. ACS Catal 2(4):599–603CrossRefGoogle Scholar
  18. 18.
    Qi D, Xing M, Zhang J (2014) Hydrophobic carbon-doped TiO2/MCF-F composite as a high performance photocatalyst. J Phys Chem C 118(14):7329–7336CrossRefGoogle Scholar
  19. 19.
    Xie Y, Kum J, Zhao X et al (2011) Enhanced photocatalytic activity of mesoporous SN-codoped TiO2 loaded with ag nanoparticles. Semicond Sci Technol 26(8):085–037CrossRefGoogle Scholar
  20. 20.
    Wang P, Lei J, Xing M et al (2015) J Environ Chem Eng 3(2):961CrossRefGoogle Scholar
  21. 21.
    Li H, Shen X, Liu Y, Wang L, Lei J, Zhang J (2016) J Alloys Compd 687Google Scholar
  22. 22.
    Ünlü H, Horing NJ, Dabowski J (eds) (2015) Low-dimensional and nanostructured materials and devices: properties, synthesis, characterization, modelling and applications. SpringerGoogle Scholar
  23. 23.
    Li H, Shen X, Liu Y et al (2015) Facile phase control for hydrothermal synthesis of anatase-rutile TiO2 with enhanced photocatalytic activity. J Alloys Compd 646:380–386CrossRefGoogle Scholar
  24. 24.
    Zhang D, Gu X, Jing F et al (2015) High performance ultraviolet detector based on TiO2/ZnO heterojunction. J Alloys Compd 618:551–554CrossRefGoogle Scholar
  25. 25.
    Lin L, Yang Y, Men L et al (2013) A highly efficient TiO2@ZnO n–p–n heterojunction nanorod photocatalyst. Nanoscale 5(2):588–593CrossRefGoogle Scholar
  26. 26.
    Malik R, Tomer VK, Chaudhary V et al (2016) Facile synthesis of hybridized mesoporous au@TiO2/SnO2 as efficient photocatalyst and selective VOC sensor. ChemistrySelect 1(12):3247–3258CrossRefGoogle Scholar
  27. 27.
    Zhang ZL, Wang ML, Mao YL (2015) Mater Technol 30(1):2CrossRefGoogle Scholar
  28. 28.
    Lu X, Wang Q, Cui D (2010) Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite. J Mater Sci Technol 26(10):925–930CrossRefGoogle Scholar
  29. 29.
    Yang N, Li G, Wang W et al (2011) Photophysical and enhanced daylight photocatalytic properties of N-doped TiO2/g-C3N4 composites. J Phys Chem Solids 72(11):1319–1324CrossRefGoogle Scholar
  30. 30.
    Chai B, Peng T, Mao J et al (2012) Graphitic carbon nitride (g-C3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14(48):16745–16752CrossRefGoogle Scholar
  31. 31.
    Fu M, Pi J, Dong F et al (2013) A cost-effective solid-state approach to synthesize g-C3N4 coated TiO2 nanocomposites with enhanced visible light photocatalytic activity. Int J Photoenergy 2013Google Scholar
  32. 32.
    Zhang J, Zhang M, Sun RQ et al (2012) A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew Chem 124(40):10292–10296CrossRefGoogle Scholar
  33. 33.
    Dong F, Wu L, Sun Y et al (2011) Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem 21(39):15171–15174CrossRefGoogle Scholar
  34. 34.
    Dong F, Sun Y, Wu L et al (2012) Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Cat Sci Technol 2(7):1332–1335CrossRefGoogle Scholar
  35. 35.
    Chu VB, Cho JW, Park SJ et al (2014) Use of a precursor solution to fill the gaps between indium tin oxide nanorods, for preparation of three-dimensional CuInGaS2 thin-film solar cells. Res Chem Intermed 40(1):49–56CrossRefGoogle Scholar
  36. 36.
    Chen J, Qin S, Liu Y et al (2014) Preparation of a visible light-driven Bi2O3–TiO2 composite photocatalyst by an ethylene glycol-assisted sol–gel method, and its photocatalytic properties. Res Chem Intermed 40(2):637–648CrossRefGoogle Scholar
  37. 37.
    Yan H, Yang H (2011) TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloys Compd 509(4):26–29CrossRefGoogle Scholar
  38. 38.
    Zhou J, Zhang M, Zhu Y (2015) Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. Phys Chem Chem Phys 17(5):3647–3652CrossRefGoogle Scholar
  39. 39.
    Gu L, Wang J, Zou Z et al (2014) Graphitic-C3N4-hybridized TiO2 nanosheets with reactive {001} facets to enhance the UV-and visible-light photocatalytic activity. J Hazard Mater 268:216–223CrossRefGoogle Scholar
  40. 40.
    Zhang L, Jing D, She X et al (2014) Heterojunctions in g-C3N4/TiO2 (B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity. J Mater Chem A 2(7):2071–2078CrossRefGoogle Scholar
  41. 41.
    Chen Y, Huang W, He D et al (2014) Construction of heterostructured g-C3N4/ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl Mater Interfaces 6(16):14405–14414CrossRefGoogle Scholar
  42. 42.
    Zang Y, Li L, Xu Y et al (2014) Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As3+ oxidation, MO degradation and water splitting for hydrogen evolution. J Mater Chem A 2(38):15774–15780CrossRefGoogle Scholar
  43. 43.
    Zhao S, Chen S, Yu H et al (2012) G-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation. Sep Purif Technol 99:50–54CrossRefGoogle Scholar
  44. 44.
    Shen J, Yang H, Shen Q et al (2014) Template-free preparation and properties of mesoporous g-C3N4/TiO2 nanocomposite photocatalyst. CrystEngComm 16(10):1868–1872CrossRefGoogle Scholar
  45. 45.
    Li X, Liu P, Mao Y et al (2015) Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Appl Catal B Environ 164:352–359CrossRefGoogle Scholar
  46. 46.
    Wang X, Yang W, Li F et al (2013) In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res 52(48):17140CrossRefGoogle Scholar
  47. 47.
    Han C, Wang Y, Lei Y et al (2015) In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res 8(4):1199–1209CrossRefGoogle Scholar
  48. 48.
    Sun Q, Lv K, Zhang Z et al (2015) Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst:(001) vs (101) facets of TiO2. Appl Catal B Environ 164:420–427CrossRefGoogle Scholar
  49. 49.
    Li H, Zhou L, Wang L (2015) In situ growth of TiO2 nanocrystals on g-C3N4 for enhanced photocatalytic performance. Phys Chem Chem Phys 17(26):17406–17412CrossRefGoogle Scholar
  50. 50.
    Li Y, Wang J, Yang Y et al (2015) Seed-induced growing various TiO 2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light. J Hazard Mater 292:79–89CrossRefGoogle Scholar
  51. 51.
    Wang J, Zhang WD (2012) Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity. Electrochim Acta 71:10–16CrossRefGoogle Scholar
  52. 52.
    Fu M, Liao J, Dong F et al (2014) Growth of g-C3N4 layer on commercial TiO2 for enhanced visible light photocatalytic activity. J Nanomater 2014:1Google Scholar
  53. 53.
    Boonprakob N, Wetchakun N, Phanichphant S et al (2014) Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. J Colloid Interface Sci 417:402–409CrossRefGoogle Scholar
  54. 54.
    Zhu H, Chen D, Yue D et al (2014) In-situ synthesis of g-C3N4-P25 TiO2 composite with enhanced visible light photoactivity. J Nanopart Res 16(10):2632CrossRefGoogle Scholar
  55. 55.
    Lei J, Chen Y, Shen F et al (2015) Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. J Alloys Compd 631:328–334CrossRefGoogle Scholar
  56. 56.
    Lei J, Chen Y, Wang L et al (2015) Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. J Mater Sci 50(9):3467CrossRefGoogle Scholar
  57. 57.
    Zou XX, Li GD, Wang YN et al (2011) Direct conversion of urea into graphitic carbon nitride over mesoporous TiO2 spheres under mild condition. Chem Commun 47(3):1066–1068CrossRefGoogle Scholar
  58. 58.
    Zhou X, Jin B, Li L et al (2012) A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties. J Mater Chem 22(34):17900–17905CrossRefGoogle Scholar
  59. 59.
    Li K, Gao S, Wang Q et al (2015) In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Interfaces 7(17):9023–9030CrossRefGoogle Scholar
  60. 60.
    Ma J, Tan X, Yu T et al (2016) Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive {001} TiO2 crystal facets and its visible-light photocatalytic activity. Int J Hydrog Energy 41(6):3877–3887CrossRefGoogle Scholar
  61. 61.
    Wei X, Shao C, Li X et al (2016) Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H 2 evolution. Nanoscale 8(21):11034–11043CrossRefGoogle Scholar
  62. 62.
    Chen L, Zhou X, Jin B et al (2016) Heterojunctions in g-C3N4/B-TiO2 nanosheets with exposed {001} plane and enhanced visible-light photocatalytic activities. Int J Hydrog Energy 41(18):7292–7300CrossRefGoogle Scholar
  63. 63.
    Gao ZD, Qu YF, Zhou X et al (2016) Pt-decorated g-C3N4/TiO2 nanotube arrays with enhanced visible-light photocatalytic activity for H2 evolution. ChemistryOpen 5(3):197–200CrossRefGoogle Scholar
  64. 64.
    Zhong X, Jin M, Dong H et al (2014) TiO2 nanobelts with a uniform coating of g-C3N4 as a highly effective heterostructure for enhanced photocatalytic activities. J Solid State Chem 220:54CrossRefGoogle Scholar
  65. 65.
    Zhou S, Liu Y, Li J et al (2014) Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO. Appl Catal B Environ 158:20–29CrossRefGoogle Scholar
  66. 66.
    Li G, Nie X, Chen J et al (2015) Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res 86:17–24CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations