ICMC 2018: Mathematics and Computing pp 341-359

# A Study on Fuzzy Triangle and Fuzzy Trigonometric Properties

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 253)

## Abstract

This paper investigates fuzzy triangle, fuzzy triangular properties, and fuzzy trigonometry. A fuzzy triangle on the plane is constructed by three fuzzy points as its vertices. Using the proposed fuzzy triangle, basic fuzzy trigonometric functions are investigated. The extension principle and the concepts of same and inverse points in fuzzy geometry are used to define all the proposed ideas. It is shown that some well-known trigonometric identities for crisp angles may not hold with proper equality for fuzzy angles.

## Keywords

Fuzzy number Fuzzy point Same points Inverse points Fuzzy angle Fuzzy triangle Extension principle

03E72

## References

1. 1.
Bogomolny, A.: On the perimeter and area of fuzzy sets. Fuzzy Sets Syst. 23, 257–269 (1987)
2. 2.
Buckley, J.J., Eslami, E.: Fuzzy plane geometry II: circles and polygons. Fuzzy Sets Syst. 87, 79–185 (1997)
3. 3.
Buckley, J.J., Eslami, E.: An Introduction to Fuzzy Logic and Fuzzy Systems. Physica-Verlag, Heidelberg (2002)
4. 4.
Chakraborty, D., Ghosh, D.: Analytical fuzzy plane geometry II. Fuzzy Sets Syst. 243, 84–109 (2014)
5. 5.
Chaudhuri, B.B.: Some shape definitions in of space fuzzy geometry. Pattern Recogn. Lett. 12, 531–535 (1991)
6. 6.
Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry I. Fuzzy Sets Syst. 209, 66–83 (2012)
7. 7.
Imran, B.M., Beg, M.M.S.: Estimation of $$f$$-similarity in $$f$$-triangles using fis. In: Meghanathan, N., Chaki, N., Nagamalai, D. (eds.) CCSIT 2012, Part III LNICST, vol. 86, pp. 290–299. Springer, Heidelberg (2012)Google Scholar
8. 8.
Imran, B.M., Beg, M.M.S.: Elements of sketching with words. In: Hu, X. (ed.) IEEE International Conference on Granular Computing, pp. 241–246. IEEE Computer Society, San Jose, California, USA (2010)Google Scholar
9. 9.
Li, Q., Guo, S.: Fuzzy geometric object modelling. Fuzzy Inf. Eng. (ICFIE) ASC 40, 551–563 (2007)
10. 10.
Liu, H., Coghill, G.M.: Fuzzy qualitative trigonometry. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Hawaii, USA vol. 2, pp. 1291–1296 (2005)Google Scholar
11. 11.
Pham, B.: Representation of fuzzy shapes. In: Arcelli C., et al. (eds.) IWVF4, LNCS, Vol. 2059, pp. 239–248. Springer, Heidelberg (2001)Google Scholar
12. 12.
Rosenfeld, A.: Fuzzy plane geometry: triangles. Pattern Recogn. Lett. 15, 1261–1264 (1994)
13. 13.
Rosenfeld, A.: Fuzzy geometry: an updated overview. Inf. Sci. 110, 127–133 (1998)
14. 14.
Rosenfeld, A., Haber, S.: The perimeter of a fuzzy set. Pattern Recogn. 18, 125–130 (1985)
15. 15.
Zadeh, L.A.: Toward extended fuzzy logic-a first step. Fuzzy Sets Syst. 160, 3175–3181 (2009) 