Advertisement

MATLAB Code for Linking Genetic Algorithm and EPANET for Reliability Based Optimal Design of a Water Distribution Network

  • S. ChandramouliEmail author
Conference paper

Abstract

Many researchers have developed different approaches for optimal design of water supply pipe networks. But, none of them provide a detailed coding for design procedure involved. Students and young researchers who are working in field of water distribution networks generally spend their valuable time searching for the procedure to link up Genetic Algorithm (GA) and EPANET. Therefore, in order to facilitate the young researchers and students, a detailed design procedure using EPANET solver with Genetic Algorithms in the MATLAB for reliability-based optimal design of water supply pipe networks is developed and presented in this paper with a case study.

Keywords

MatLab Epanet Water distribution network Reliability Optimal design 

References

  1. 1.
    Reehuis, E.: Multiobjective Robust Optimization of Water Distribution Networks. A Master thesis submitted to Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands (2010)Google Scholar
  2. 2.
    Alperovits, E., Shamir, U.: Design of optimal water distribution systems. Water Resour. Res. 13, 885–900 (1997)CrossRefGoogle Scholar
  3. 3.
    Quindry, G.E., Brill, E.D., Liebman, J.C.: Optimization of looped water distribution systems. J. Environ. Eng. Div. 107, 665–679 (1981)Google Scholar
  4. 4.
    Kessler, A., Shamir, U.: Analysis of the linear programming gradient method for optimal design of water supply networks. Water Resour. Res. 25, 1469–1480 (1989)CrossRefGoogle Scholar
  5. 5.
    Shamir, U.: Optimal design and operation of water distribution systems. Water Resour. Res. 10, 27–36 (1974)CrossRefGoogle Scholar
  6. 6.
    Duan, N., Mays, L.W., Lansey, K.E.: Optimal reliability-based design of pumping and distribution systems. J. Hydraul. Eng. 116, 249–268 (1990)CrossRefGoogle Scholar
  7. 7.
    Dandy, G.C., Simpson, A.R., Murphy, L.J.: An improved genetic algorithm for pipe network optimization. Water Resour. Res. 32, 449–458 (1996)CrossRefGoogle Scholar
  8. 8.
    Savic, D.A., Walters, G.A.: Genetic algorithms for least cost design of water distribution networks. J. Water Resour. Plan. Manage. 123, 67–77 (1997)Google Scholar
  9. 9.
    Gupta, A., Gupta, I., Khanna, P.: Genetic algorithm for optimization of water distribution systems. Environ. Model. Softw. 4, 437–446 (1999)CrossRefGoogle Scholar
  10. 10.
    Vairavamoorthy, K., Ali, M.: Optimal design of water distribution networks using genetic algorithm. J. Comput. Aided Civ. Infrastruct. Eng. 15, 374–382 (2000)CrossRefGoogle Scholar
  11. 11.
    Reca, J., Martinez, J., Banos, R., Gil, C.: Optimal design of gravity-fed looped water distribution networks considering the resilience index. J. Water Resour. Plan. Manage. 134, 234–238 (2008)Google Scholar
  12. 12.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefGoogle Scholar
  13. 13.
    Loganathan, G.V., Greene, J.J., Ahn, TJ.: Design heuristic for globally minimum cost water-distribution systems. J. Water Resour. Plan. Manage. 121, 182192 (1995)Google Scholar
  14. 14.
    Cunha, M.D.C., Sousa, J.: Water distribution network design optimization: simulated annealing approach. J. Water Resour. Plan. Manage. 125, 215–221 (1999)CrossRefGoogle Scholar
  15. 15.
    Glover, F.: Tabu search – Part 1. ORSA, J. Comput. 1, 190–206 (1989)CrossRefGoogle Scholar
  16. 16.
    Cunha, M., Ribeiro, L.: Tabu search algorithms for water network optimization. Eur. J. Oper. Res. 157, 746–758 (2004)CrossRefGoogle Scholar
  17. 17.
    Storn, R., Price, K.: Differential evolution—a simple and efficient Heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)CrossRefGoogle Scholar
  18. 18.
    Vasan, A., Simonovic, S.: Optimization of water distribution network design using differential evolution. J. Water Resour. Plan. Manage. 136, 279–287 (2010)CrossRefGoogle Scholar
  19. 19.
    Banos, R., Gil, C., Agulleiro, J.I., Reca, J.: A memetic algorithm for water distribution network design. Soft Comput. Ind. Appl. 39, 279–289 (2007)Google Scholar
  20. 20.
    Banos, R., Gil, C., Reca, J., Montoya, F.G.: A memetic algorithm applied to the design of water distribution networks. Appl. Soft Comput. 10, 261–266 (2010)CrossRefGoogle Scholar
  21. 21.
    Perelman, L., Ostfeld, A.: An adaptive heuristic cross entropy algorithm for optimal design of water distribution systems. Eng. Optim. 39(4), 413–428 (2007).  https://doi.org/10.1080/03052150601154671CrossRefGoogle Scholar
  22. 22.
    Lin, M.D., Liu, Y.H., Liu, G.F., Chu, C.W.: Scatter search heuristic for least cost design of water distribution networks. Eng. Optim. 39, 855–876 (2007)CrossRefGoogle Scholar
  23. 23.
    Chu, C., Lin, M., Liu, G., Sung, Y.: Application of immune algorithms on solving minimum-cost problem of water distribution network. J. Math. Comput. Model. 48, 1888–1900 (2008)Google Scholar
  24. 24.
    Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan. Manage. 129, 210–225 (2003)CrossRefGoogle Scholar
  25. 25.
    Maier, H., Simpson, A., Zecchin, A., Foong, W., Phang, K., Seah, H., Tan, C.: Ant colony optimization for design of water distribution systems. J. Water Resour. Plan. Manage. 129, 200–209 (2003)CrossRefGoogle Scholar
  26. 26.
    Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B.: Parametric study for an ant algorithm applied to water distribution system optimization. IEEE Trans. Evol. Comput. 9, 175–179 (2005)CrossRefGoogle Scholar
  27. 27.
    Zecchin, A.C., Simpson, A.R., Maier, H.R., Leonard, M., Roberts, A.J., Berrisford, MJ.: Application of two ant colony optimization algorithms to water distribution system optimization. Math. Comput. Model. 44, 451–468 (2006)Google Scholar
  28. 28.
    Izquierdo, M., Izquierdo, J., Perez, R., Tung, M.M.: Particle swarm optimization applied to the design of water supply systems. Comput. Math. Appl. 56, 769–776 (2008)Google Scholar
  29. 29.
    Geem, Z.: Optimal cost design of water distribution networks using harmony search. Eng. Optim. 38, 259–277 (2006)CrossRefGoogle Scholar
  30. 30.
    Geem, Z.W., Kim, H.H., Jeong, S.H.: Cost efficient and practical design of water supply network using harmony search. Afr. J. Agric. Res. 6, 3110–3116 (2011)Google Scholar
  31. 31.
    Geem, Z.W., Cho, Y.H.: Optimal design of water distribution networks using parameter-setting-free harmony search for two major parameters. J. Water Resour. Plan. Manage. 137, 377–380 (2010)CrossRefGoogle Scholar
  32. 32.
    Geem, Z.W.: Harmony search optimization to the pump-induced water distribution network design. Civ. Eng. Environ. Syst. 26, 211–221 (2009)CrossRefGoogle Scholar
  33. 33.
    Abebe, A.J., Solomatine, D.P.: Application of global optimization to the design of pipe networks. In: 3rd International Conferences on Hydroinformatics, Copenhagen, Denmark, pp. 989–996 (1998)Google Scholar
  34. 34.
    Wu, Z.Y., Simpson, A.R.: Competent genetic evolutionary optimization of water distribution systems. J. Comput. Civ. Eng. 15, 89–101 (2001)CrossRefGoogle Scholar
  35. 35.
    Prasad, T.D., Sung-Hoon, H., Namsik, P.: Reliability based design of water distribution networks using multiobjective genetic algorithms. KSCE J. Civ. Eng. 7, 351–361 (2003)CrossRefGoogle Scholar
  36. 36.
    Prasad, T.D., Park, N.S.: Multiobjective genetic algorithms for design of water distribution networks. J. Water Resour. Plan. Manage. 130, 73–82 (2004)CrossRefGoogle Scholar
  37. 37.
    Tolson, B.A., Maier, H.R., Simpson, A.R., Lence, B.J.: Genetic algorithms for reliability-based optimization of water distribution systems. J. Water Resour. Plan. Manage. 130, 63–72 (2004)Google Scholar
  38. 38.
    Van Vuuren, S.J., Van Rooyen, P.G., Van Zyl, J.E., Van Dijk, M.: Application and Conceptual Development of Genetic Algorithms for Optimization in the Water Industry. WRC Report No. 1388/1/05. Water Research Commission, Pretoria, South Africa (2005)Google Scholar
  39. 39.
    Nagesh Kumar, D., Raju, K.S., Ashok, B.: Optimal reservoir operation for irrigation of multiple crops using genetic algorithms. J. Irrig. Drain. Eng. 132, 123–129 (2006)CrossRefGoogle Scholar
  40. 40.
    Konaka, A., Coitb, D.W., Smithc, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91, 992–1007 (2006)Google Scholar
  41. 41.
    Babyyan, A.V., Savic, D.A., Walters, G.A., Kapelan, Z.S.: Robust least cost design of water distribution networks using redundancy and integration based methodologies. J. Water Resour. Plan. Manage. ASCE, 133(1), 67–77 (2007)Google Scholar
  42. 42.
    Vamvakeridou-Lyroudia, L.S., Savic, D.A., Walters, G.A.: Fuzzy Hierarchical decision support system for water distribution network optimization. J. Civ. Eng. Environ. Syst. 23(3), 237–261 (2007)CrossRefGoogle Scholar
  43. 43.
    Van Dijk, M., Van Vuuren, S.J., Van Zyl, J.E.: Optimizing water distribution systems using a weighted penalty in a genetic algorithm. J. Water SA (online) 34(5) (2008)Google Scholar
  44. 44.
    Prasad, G.V.K.S.: Optimal design of water distribution network for uniform supply in intermittent system. A Ph.D. thesis submitted to NIT, Warangal, India (2008)Google Scholar
  45. 45.
    Afshar, M.H.: Application of a Compact Genetic Algorithm to pipe network optimization problems, SceitiaIranica. Trans. A: Civ. Eng. 16, 264–271 (2009)Google Scholar
  46. 46.
    Fujiwara, O., Khang, D.B.: A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour. Res. 26, 539–549 (1990)CrossRefGoogle Scholar
  47. 47.
    Liong, S.Y., Atiquzzaman, M.: Optimal design of water distribution network using shuffled complex evolution. J. Inst. Eng. 44, 93–107 (2004)Google Scholar
  48. 48.
    Van Dijk, M., Van Vuuren, S., Van Zyl, J.: Optimising water distribution systems using a weighted penalty in a genetic algorithm. Water SA 34, 537–548 (2008)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringMVGR College of Engineering (Autonoums)VizianagaramIndia

Personalised recommendations