# Uniform Design for Experiments with Mixtures

Chapter

First Online:

## Abstract

This chapter introduces uniform design and modeling for experiments with mixtures and for experiments with restricted mixtures. Firstly, some designs for experiments with mixtures including the Scheffé simplex-lattice, simplex-centroid designs, and axial designs are introduced. Secondly, the uniform design of experiments with mixtures and the corresponding uniformity criteria are introduced. Finally, various modeling techniques for designs with mixtures are given.

## References

- Borkowski, J.J., Piepel, G.F.: Uniform designs for highly constrained mixture experiments. J. Qual. Technol.
**41**, 35–47 (2009)CrossRefGoogle Scholar - Chan, L.Y.: Optimal designs for experiments with mixtures: a survey. Commun. Stat. Theory Methods
**29**, 2281–2312 (2000)MathSciNetCrossRefGoogle Scholar - Chen, R.B., Hsu, Y.W., Hung, Y., Wang, W.C.: Discrete particle swarm optimization for constructing uniform design on irregular regions. Comput. Stat. Data Anal.
**72**, 282–297 (2014)MathSciNetCrossRefGoogle Scholar - Chuang, S.C., Hung, Y.C.: Uniform design over general input domains with applications to target region estimation in computer experiments. Comput. Stat. Data Anal.
**54**, 219–232 (2010)MathSciNetCrossRefGoogle Scholar - Cornell, J.A.: Experiments with Mixtures, Designs, Models and the Analysis of Mixture Data, 3rd edn. Wiley, New York (2002)CrossRefGoogle Scholar
- Cornell, J.A.: A Primer on Experiments with Mixtures. Wiley, New Jersey (2011)CrossRefGoogle Scholar
- Fang, K.T.: Experimental designs for computer experiments and for industrial experiments with model unknown. J. Korean Stat. Soc.
**31**, 277–299 (2002)MathSciNetGoogle Scholar - Fang, K.T., Ma, C.X.: Orthogonal and Uniform Experimental Designs. Science Press, Beijing (2001)Google Scholar
- Fang, K.T., Wang, Y.: Number-Theoretic Methods in Statistics. Chapman and Hall, London (1994)CrossRefGoogle Scholar
- Fang, K.T., Yang, Z.H.: On uniform design of experiments with restricted mixtures and generation of uniform distribution on some domains. Stat. Probab. Lett.
**46**, 113–120 (2000)MathSciNetCrossRefGoogle Scholar - Fang, K.T., Yuan, K.H., Bentler, P.M.: Applications of number-theoretic metods to quantizers of elliptically contoured distributions. Multivar. Anal. Appl.
**24**, 237–251 (1994)Google Scholar - Jing, D., Li, P., Stagnitti, F., Xiong, X.: Optimization of laccase production from trametes versicolor by solid fermentation. Can. J. Microbiol.
**53**, 245–251 (2007)CrossRefGoogle Scholar - Johnson, M.E.: Multivariate statistical simulation. J. R. Stat. Soc. Ser. A
**151**, 930–932 (1988)CrossRefGoogle Scholar - Linde, Y.L., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Trans. Commun.
**28**, 84–95 (1980)CrossRefGoogle Scholar - Liu, Y., Liu, M.Q.: Construction of uniform designs for mixture experiments with complex constraints. Commun. Stat. Theory Methods
**45**, 2172–2180 (2016)MathSciNetCrossRefGoogle Scholar - Ning, J.H., Fang, K.T., Zhou, Y.D.: Uniform design for experiments with mixtures. Commun. Stat. Theory Methods
**40**, 1734–1742 (2011a)MathSciNetCrossRefGoogle Scholar - Ning, J.H., Zhou, Y.D., Fang, K.T.: Discrepancy for uniform design of experiments with mixtures. J. Stat. Plan. Inference
**141**, 1487–1496 (2011b)MathSciNetCrossRefGoogle Scholar - Piepel, G., Anderson, C.M., Redgate, P.E.: Response surface designs for irregularly-shaped region - parts 1, 2, and 3. 1993 Proccedings of the Section on Physical and Engineering Sciences, pp. 169–179. American Statistical Associetion, Alexandria (1993)Google Scholar
- Piepel, G., Cooley, S., Gan, H., Kot, W., Pegg, I.: Test matrix support TLCP model development for RPP-WTP HWL glasses, Vsl-03s3780-1, vitreous state laboratory. The Catholic University of America, Washington (2002)Google Scholar
- Prescott, P.: Nearly uniform designs for mixture experiments. Commun. Stat. Theory Methods
**37**, 2095–2115 (2008)MathSciNetCrossRefGoogle Scholar - Scheffé, H.: Experiments with mixtures. J. R. Stat. Soc. Ser. B
**20**, 344–360 (1958)MathSciNetzbMATHGoogle Scholar - Scheffé, H.: The simplex-centroid design for experiments with mixtures. J. R. Stat. Soc. Ser. B
**25**, 235–263 (1963)MathSciNetzbMATHGoogle Scholar - Tang, M., Li, J., Chan, L.Y., Lin, D.K.J.: Application of uniform design in the formation of cement mixtures. Qual. Eng.
**16**, 461–474 (2004)CrossRefGoogle Scholar - Wang, Y., Fang, K.T.: Number theoretic methods in applied statistics (II). Chin. Ann. Math. Ser. B
**11**, 41–55 (1990)MathSciNetzbMATHGoogle Scholar - Wang, Y., Fang, K.T.: Uniform design of experiments with mixtures. Sci. China Ser. A
**39**, 264–275 (1996)MathSciNetzbMATHGoogle Scholar

## Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018