Advertisement

Uniform Design for Experiments with Mixtures

  • Kai-Tai FangEmail author
  • Min-Qian Liu
  • Hong Qin
  • Yong-Dao Zhou
Chapter
Part of the Lecture Notes in Statistics book series (LNS, volume 221)

Abstract

This chapter introduces uniform design and modeling for experiments with mixtures and for experiments with restricted mixtures. Firstly, some designs for experiments with mixtures including the Scheffé simplex-lattice, simplex-centroid designs, and axial designs are introduced. Secondly, the uniform design of experiments with mixtures and the corresponding uniformity criteria are introduced. Finally, various modeling techniques for designs with mixtures are given.

References

  1. Borkowski, J.J., Piepel, G.F.: Uniform designs for highly constrained mixture experiments. J. Qual. Technol. 41, 35–47 (2009)CrossRefGoogle Scholar
  2. Chan, L.Y.: Optimal designs for experiments with mixtures: a survey. Commun. Stat. Theory Methods 29, 2281–2312 (2000)MathSciNetCrossRefGoogle Scholar
  3. Chen, R.B., Hsu, Y.W., Hung, Y., Wang, W.C.: Discrete particle swarm optimization for constructing uniform design on irregular regions. Comput. Stat. Data Anal. 72, 282–297 (2014)MathSciNetCrossRefGoogle Scholar
  4. Chuang, S.C., Hung, Y.C.: Uniform design over general input domains with applications to target region estimation in computer experiments. Comput. Stat. Data Anal. 54, 219–232 (2010)MathSciNetCrossRefGoogle Scholar
  5. Cornell, J.A.: Experiments with Mixtures, Designs, Models and the Analysis of Mixture Data, 3rd edn. Wiley, New York (2002)CrossRefGoogle Scholar
  6. Cornell, J.A.: A Primer on Experiments with Mixtures. Wiley, New Jersey (2011)CrossRefGoogle Scholar
  7. Fang, K.T.: Experimental designs for computer experiments and for industrial experiments with model unknown. J. Korean Stat. Soc. 31, 277–299 (2002)MathSciNetGoogle Scholar
  8. Fang, K.T., Ma, C.X.: Orthogonal and Uniform Experimental Designs. Science Press, Beijing (2001)Google Scholar
  9. Fang, K.T., Wang, Y.: Number-Theoretic Methods in Statistics. Chapman and Hall, London (1994)CrossRefGoogle Scholar
  10. Fang, K.T., Yang, Z.H.: On uniform design of experiments with restricted mixtures and generation of uniform distribution on some domains. Stat. Probab. Lett. 46, 113–120 (2000)MathSciNetCrossRefGoogle Scholar
  11. Fang, K.T., Yuan, K.H., Bentler, P.M.: Applications of number-theoretic metods to quantizers of elliptically contoured distributions. Multivar. Anal. Appl. 24, 237–251 (1994)Google Scholar
  12. Jing, D., Li, P., Stagnitti, F., Xiong, X.: Optimization of laccase production from trametes versicolor by solid fermentation. Can. J. Microbiol. 53, 245–251 (2007)CrossRefGoogle Scholar
  13. Johnson, M.E.: Multivariate statistical simulation. J. R. Stat. Soc. Ser. A 151, 930–932 (1988)CrossRefGoogle Scholar
  14. Linde, Y.L., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28, 84–95 (1980)CrossRefGoogle Scholar
  15. Liu, Y., Liu, M.Q.: Construction of uniform designs for mixture experiments with complex constraints. Commun. Stat. Theory Methods 45, 2172–2180 (2016)MathSciNetCrossRefGoogle Scholar
  16. Ning, J.H., Fang, K.T., Zhou, Y.D.: Uniform design for experiments with mixtures. Commun. Stat. Theory Methods 40, 1734–1742 (2011a)MathSciNetCrossRefGoogle Scholar
  17. Ning, J.H., Zhou, Y.D., Fang, K.T.: Discrepancy for uniform design of experiments with mixtures. J. Stat. Plan. Inference 141, 1487–1496 (2011b)MathSciNetCrossRefGoogle Scholar
  18. Piepel, G., Anderson, C.M., Redgate, P.E.: Response surface designs for irregularly-shaped region - parts 1, 2, and 3. 1993 Proccedings of the Section on Physical and Engineering Sciences, pp. 169–179. American Statistical Associetion, Alexandria (1993)Google Scholar
  19. Piepel, G., Cooley, S., Gan, H., Kot, W., Pegg, I.: Test matrix support TLCP model development for RPP-WTP HWL glasses, Vsl-03s3780-1, vitreous state laboratory. The Catholic University of America, Washington (2002)Google Scholar
  20. Prescott, P.: Nearly uniform designs for mixture experiments. Commun. Stat. Theory Methods 37, 2095–2115 (2008)MathSciNetCrossRefGoogle Scholar
  21. Scheffé, H.: Experiments with mixtures. J. R. Stat. Soc. Ser. B 20, 344–360 (1958)MathSciNetzbMATHGoogle Scholar
  22. Scheffé, H.: The simplex-centroid design for experiments with mixtures. J. R. Stat. Soc. Ser. B 25, 235–263 (1963)MathSciNetzbMATHGoogle Scholar
  23. Tang, M., Li, J., Chan, L.Y., Lin, D.K.J.: Application of uniform design in the formation of cement mixtures. Qual. Eng. 16, 461–474 (2004)CrossRefGoogle Scholar
  24. Wang, Y., Fang, K.T.: Number theoretic methods in applied statistics (II). Chin. Ann. Math. Ser. B 11, 41–55 (1990)MathSciNetzbMATHGoogle Scholar
  25. Wang, Y., Fang, K.T.: Uniform design of experiments with mixtures. Sci. China Ser. A 39, 264–275 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  • Kai-Tai Fang
    • 1
    • 2
    Email author
  • Min-Qian Liu
    • 3
  • Hong Qin
    • 4
  • Yong-Dao Zhou
    • 3
  1. 1.Beijing Normal University-Hong Kong Baptist University United International CollegeZhuhaiChina
  2. 2.Institute of Applied MathematicsChinese Academy of SciencesBeijingChina
  3. 3.School of Statistics and Data ScienceNankai UniversityTianjinChina
  4. 4.Faculty of Mathematics and StatisticsCentral China Normal UniversityWuhanChina

Personalised recommendations