Explore the Brain Activity during Translation and Interpreting Using Functional Near-Infrared Spectroscopy

  • Fengmei Lu
  • Zhen YuanEmail author
Part of the New Frontiers in Translation Studies book series (NFTS)


Since the mid-1970s, functional near infrared spectroscopy (fNIRS) has been developed as a non-invasive technique to investigate brain cerebral hemodynamic levels associated with brain activity under different stimuli by measuring the change of absorption coefficient of the near-infrared light between 650 nm and 950 nm (Huppert et al. 2009; Jöbsis-vander Vliet 1977; Yodh and Chance 1995; Yuan 2013a, b; Yuan and Ye 2013; Yuan et al. 2010, 2014). Compared to other available functional neuroimaging modalities, such as functional magnetic resonance (fMRI) and positron emission tomography (PET), fNIRS has the advantages of portability, convenience and low cost. And more importantly, it offers unsurpassed high temporal resolution and quantitative information for both oxy-hemoglobin (HbO2) and deoxy-hemoglobin (HbR), which are essential for identifying rapid changes in dynamic patterns of brain activities including changes in blood oxygen, blood volume and blood flow.


Functional Near-infrared Spectroscopy Yuan 32a Functional Neuroimaging Modalities fMRI Functional Magnetic Resonance Imaging fNIRS Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by SRG2013-00035-FHS Grant, MYRG2014-00093-FHS Grant from University of Macau in Macao and FDCT 026/2014/A1 grant from Macao Government.


  1. Bajo, M. T., Padilla, F., & Padilla, P. (2000). Comprehension processes in simultaneous interpreting. In A. Chesterman, N. Gallardo San Salvador, & Y. Gambier (Eds.), Translation in context (pp. 127–142). Amsterdam: John Benjamins.CrossRefGoogle Scholar
  2. Borius, P.-Y., Giussani, C., Draper, L., & Roux, F.-E. (2012). Sentence translation in proficient bilinguals: A direct electrostimulation brain mapping. Cortex, 48(5), 614–622.CrossRefGoogle Scholar
  3. Brazy, J. E., Lewis, D. V., Mitnick, M. H., & Jöbsis vander Vliet, F. F. (1985). Noninvasive monitoring of cerebral oxygenation in preterm infants: Preliminary observations. Pediatrics, 75(2), 217–225.Google Scholar
  4. Chance, B. (1991). Optical method. Annual Review of Biophysics and Biophysical Chemistry, 20(1), 1–28.CrossRefGoogle Scholar
  5. Christoffels, I. K., de Groot, A. M. B., & Judith, F. K. (2006). Memory and language skills in simultaneous interpreters: The role of expertise and language proficiency. Journal of Memory and Language, 54(3), 324–345.CrossRefGoogle Scholar
  6. Colier, W. N., Quaresima, V., Oeseburg, B., & Ferrari, M. (1999). Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Experimental Brain Research, 129(3), 457–461.CrossRefGoogle Scholar
  7. Cutini, S., Moro, S. B., & Bisconti, S. (2012). Functional near infrared optical imaging in cognitive neuroscience: An introductory review. Journal of Near Infrared Spectroscopy, 20(1), 75–92.CrossRefGoogle Scholar
  8. Delpy, D. T., & Cope, M. (1997). Quantification in tissue near–infrared spectroscopy. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352(1354), 649–659.CrossRefGoogle Scholar
  9. Fabbro, F., & Darò, V. (1995). Delayed auditory feedback in polyglot simultaneous interpreters. Brain and Language, 48(3), 309–319.CrossRefGoogle Scholar
  10. Ferrari, M., De Marchis, C., Giannini, I., Di Nicola, A., Agostino, R., Nodari, S., & Bucci, G. (1986a). Cerebral blood volume and hemoglobin oxygen saturation monitoring in neonatal brain by near IR spectroscopy. Advances in Experimental Medicine and Biology, 200, 203–211.CrossRefGoogle Scholar
  11. Ferrari, M., Zanette, E., Giannini, I., Sideri, G., Fieschi, C., & Carpi, A. (1986b). Effects of carotid artery compression test on regional cerebral blood volume, hemoglobin oxygen saturation and cytochrome-c-oxidase redox level in cerebrovascular patients. Advances in Experimental Medicine and Biology, 200, 213–221.CrossRefGoogle Scholar
  12. Franceschini, M. A., Fantini, S., Thompson, J. H., Culver, J. P., & Boas, D. A. (2003). Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging. Psychophysiology, 40(4), 548–560.CrossRefGoogle Scholar
  13. Grosjean, F. (1985). Polyglot aphasics and language mixing: A comment on Perecman (1984). Brain and Language, 26(2), 349–355.CrossRefGoogle Scholar
  14. Heekeren, H. R., Obrig, H., Wenzel, R., Eberle, K., Ruben, J., Villringer, K., . . . Villringer, A. (1997). Cerebral haemoglobin oxygenation during sustained visual stimulation – A near–infrared spectroscopy study. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352(1354), 743-750.CrossRefGoogle Scholar
  15. Hervais-Adelman, A., Moser-Mercer, B., Michel, C. M., & Golestani, N. (2011). The neural basis of simultaneous interpretation: A functional magnetic resonance imaging investigation of novice simultaneous interpreters. Paper presented at the 8th international symposium on Bilingualism, Oslo, Norway.Google Scholar
  16. Hirth, C., Obrig, H., Villringer, K., Thiel, A., Bernarding, J., Mühlnickel, W., et al. (1996). Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy. Neuroreport, 7(12), 1977–1981.CrossRefGoogle Scholar
  17. Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), 280–298.CrossRefGoogle Scholar
  18. Hurtado Albir, A. (1999). La competencia traductora y su adquisición. Un modelo holístico y dinámico. Perspectives, 7(2), 177–188.CrossRefGoogle Scholar
  19. Ito, H., Kanno, I., & Fukuda, H. (2005). Human cerebral circulation: Positron emission tomography studies. Annuals of Nuclear Medicine, 19(2), 65–74.CrossRefGoogle Scholar
  20. Janyan, A., Popivanov, I., & Andonova, E. (2009). Concreteness effect and word cognate status: ERPs in single word translation. In K. Alter, M. Horne, M. Lindgren, M. Roll, & J. von Koss Torkildsen (Eds.), Brain talk: Discourse with and in the brain (pp. 21–30). Lund: Lunds Universitet.Google Scholar
  21. Jöbsis vander Vliet, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264–1267.CrossRefGoogle Scholar
  22. Jöbsis vander Vliet, F. F. (1999). Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy. Journal of Biomedical Optics, 4(4), 392–397.CrossRefGoogle Scholar
  23. Klein, D., Milner, B., Zatorre, R. J., Meyer, E., & Evans, A. C. (1995). The neural substrates underlying word generation: A bilingual functional-imaging study. Proceedings of the National Academy of Science for the United States of America, 92(7), 2899–2903.CrossRefGoogle Scholar
  24. Klein, D., Zatorre, R. J., Chen, J.-K., Milner, B., Crane, J., Belin, P., & Bouffard, M. (2006). Bilingual brain organization: A functional magnetic resonance adaptation study. Neuroimage, 31(1), 366–375.CrossRefGoogle Scholar
  25. Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K.-D., Dirnagl, U., Villringer, A., & Frahm, J. (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. Journal of Cerebral Blood Flow & Metabolism, 16(5), 817–826.CrossRefGoogle Scholar
  26. Kurz, I. (1995). Watching the brain at work – An exploratory study of EEG changes during Simultaneous Interpreting (SI). The Interpreters’ Newsletter, 6, 3–16.Google Scholar
  27. Kurz, I. (2003). Physiological stress during simultaneous interpreting: A comparison of experts and novices. The Interpreters’ Newsletter, 12, 51–67.Google Scholar
  28. Lehtonen, M. H., Laine, M., Niemi, J., Thomsen, T., Vorobyev, V. A., & Hugdahl, K. (2005). Brain correlates of sentence translation in Finnish–Norwegian bilinguals. Neuroreport, 16(6), 607–610.CrossRefGoogle Scholar
  29. Marco, F., & Valentina, Q. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2), 921–935.CrossRefGoogle Scholar
  30. Meek, J. H., Elwell, C. E., Khan, M. J., Romaya, J., Wyatt, J. S., Delpy, D. T., & Zeki, S. (1995). Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy. Proceedings of the Royal Society of London B: Biological Sciences, 261(1362), 351–356.CrossRefGoogle Scholar
  31. Obler, L. K. (1983). La neuropsychologie du bilinguisme. Langages, 18(72), 33–43.CrossRefGoogle Scholar
  32. Price, C. J., Green, D. W., & Von Studnitz, R. (1999). A functional imaging study of translation and language switching. Brain, 122(12), 2221–2235.CrossRefGoogle Scholar
  33. Quaresima, V., Ferrari, M., van der Sluijs, M. C., Menssen, J., & Colier, W. N. (2002). Lateral frontal cortex oxygenation changes during translation and language switching revealed by non-invasive near-infrared multi-point measurements. Brain Research Bulletin, 59(3), 235–243.CrossRefGoogle Scholar
  34. Reynolds, E. O., Wyatt, J. S., Azzopardi, D., Delpy, D. T., Cady, E. B., Cope, M., & Wray, S. (1988). New non-invasive methods for assessing brain oxygenation and haemodynamics. British Medical Bulletin, 44(4), 1052–1075.CrossRefGoogle Scholar
  35. Rinne, J., et al. (2000). The translating brain: cerebral activation patterns during simultaneous interpreting. Neuroscience letters, 294(2), 85–88.CrossRefGoogle Scholar
  36. Ruben, J., Wenzel, R., Obrig, H., Villringer, K., Bernarding, J., Hirth, C., . . . Villringer, A. (1997). Haemoglobin oxygenation changes during visual stimulation in the occipital cortex. Advances in Experimental Medicine and Biology, 428, 181-187.CrossRefGoogle Scholar
  37. Sakatani, K., Chen, S., Lichty, W., Zuo, H., & Wang, Y.-P. (1999). Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Human Development, 55(3), 229–236.CrossRefGoogle Scholar
  38. Sato, H., Takeuchi, T., & Sakai, K. L. (1999). Temporal cortex activation during speech recognition: An optical topography study. Cognition, 73(3), B55–B66.CrossRefGoogle Scholar
  39. Wyatt, J. S., Cope, M., Delpy, D. T., Wray, S., & Reynolds, E. O. (1986). Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry. The Lancet, 2, 1063–1066.CrossRefGoogle Scholar
  40. Yodh, A., & Chance, B. (1995). Spectroscopy and imaging with diffusing light. Physics Today, 48(3), 34–41.CrossRefGoogle Scholar
  41. Yuan, Z. (2013a). Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements. Biomedical Optics Express, 4(11), 2629–2643.CrossRefGoogle Scholar
  42. Yuan, Z. (2013b). A spatiotemporal and time-frequency analysis of functional near infrared spectroscopy brain signals using independent component analysis. Journal of Biomedical Optics, 18(10), 106011.CrossRefGoogle Scholar
  43. Yuan, Z., & Ye, J. C. (2013). Fusion of fNIRS and fMRI data: Identifying when and where hemodynamic signals are changing in human brains. Frontiers in Human Neuroscience.
  44. Yuan, Z., Zhang, Q., Sobel, E. S., & Jiang, H. (2010). Image-guided optical spectroscopy in diagnosis of osteoarthritis: A clinical study. Biomedical Optics Express, 1, 74–86.CrossRefGoogle Scholar
  45. Yuan, Z., Zhang, J., Wang, X., & Li, C. (2014). A systematic investigation of reflectance diffuse optical tomography using nonlinear reconstruction methods and continuous wave measurements. Biomedical Optics Express, 5(9), 3011–3022.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Bioimaging Core, Faculty of Health SciencesUniversity of MacauMacauChina

Personalised recommendations