Outline for a Relevance Theoretical Model of Machine Translation Post-editing

  • Michael Carl
  • Moritz Schaeffer
Part of the New Frontiers in Translation Studies book series (NFTS)


Translation process research (TPR) has advanced in the recent years to a state which allows us to study “in great detail what source and target text units are being processed, at a given point in time, to investigate what steps are involved in this process, what segments are read and aligned and how this whole process is monitored” (Alves 2015, p. 32). We have sophisticated statistical methods and with the powerful tools to produce a better and more detailed understanding of the underlying cognitive processes that are involved in translation. Following Jakobsen (2011), who suspects that we may soon be in a situation which allows us to develop a computational model of human translation, Alves (2015) calls for a “clearer affiliation between TPR studies and a particular cognitive sciences paradigm” (p. 23).


Post-edited Machine Translation (PEMT) Target Text (TT) Translational Research Process (TPR) Cognitive Science Paradigm Human Translation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alves, F. (2015). Translation process research at the interface: Paradigmatic, theoretical, and metodological issues in dialogue with cognitive science, expertise studies, and psycholinguistics. In A. Ferreira & J. W. Schwieter (Eds.), Psycholinguistic and cognitive inquiries into translation and interpreting (pp. 17–40). Amsterdam: John Benjamins.Google Scholar
  2. Alves, F., & Gonçalves, J. L. (2003). A relevance theory approach to the investigation of inferential processes in translation. In F. Alves (Ed.), Triangulating translation: Perspectives in process oriented research (pp. 3–24). Amsterdam: John Benjamins.CrossRefGoogle Scholar
  3. Alves, F., Koglin, A., Mesa-Lao, B., Sekino, K., & Szpak, K. S. (2014, September 26–27). Investigating cognitive effort in post-editing: A relevance-theoretical approach. Paper presented at the International Conference on Eyetracking and Applied Linguistics, Warsaw.Google Scholar
  4. Anderson, J. R. (2007). How can the human mind occur in the physical universe. New York: Oxford University Press.CrossRefGoogle Scholar
  5. Balling, L. W., Hvelplund, K. T., & Sjørup, A. C. (2014). Evidence of parallel processing during translation. Meta, 59(2), 234–259.CrossRefGoogle Scholar
  6. Bangalore, S., Behrens, B., Carl, M., Ghankot, M., Heilmann, A., Nitzke, J., et al. (2016). Syntactic variance and priming effects in translation. In New directions in empirical translation process research (pp. 211–238). Berlin: Springer.CrossRefGoogle Scholar
  7. Blakemore, D. (2002). Relevance and linguistic meaning: The semantics and pragmatics of discourse markers. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Brown, P., Cocke, J., Pietra, S. D., Jelinek, F., Mercer, R., & Roossin, P. (1988, August 22–27). A statistical approach to language translation. Paper presented at the 12th conference on computational linguistics, COLING-88, Budapest, Hungary.Google Scholar
  9. Brown, P., Pietra, V. D., Pietra, S. D., & Mercer, R. (1993). The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2), 263–311.Google Scholar
  10. Campbell, S. (2000). Choice network analysis in translation research. In M. Olohan (Ed.), Intercultural faultlines: Research models in translation studies: Textual and cognitive aspects (pp. 29–42). Manchester: St. Jerome.Google Scholar
  11. Carl, M. (2010, November 18–19). A computational framework for a cognitive model of human translation processes. Paper presented at the translating and the computer 32, London. Retrieved from
  12. Carl, M., & Dragsted, B. (2012). Inside the monitor model: Processes of default and challenged translation production. Translation: Computation, Corpora, Cognition. Special Issue on the Crossroads Between Contrastive Linguistics, Translation Studies and Machine Translation, 2(1), 127–145.Google Scholar
  13. Carl, M., Schaeffer, M., & Bangalore, S. (2016). The CRITT translation process research database. In M. Carl, S. Bangalore, & M. Schaeffer (Eds.), New directions in empirical translation process research (pp. 13–54). New York: Springer.CrossRefGoogle Scholar
  14. Čulo, O., Gutermuth, S., Hansen-Schirra, S., & Nitzke, J. (2014). The influence of post-editing on translation strategies. In S. O’Brien, L. W. Balling, M. Carl, M. Simard, & L. Specia (Eds.), Post-editing of machine translation: Processes and applications (pp. 200–219). Newcastle: Cambridge Scholars Publishing.Google Scholar
  15. Gile, D. (1995). Basic concepts and models for interpreter and translator training. Amsterdam: John Benjamins.CrossRefGoogle Scholar
  16. Göpferich, S. (2009). Comprehensibility assessment using the Karlsruhe comprehensibility concept. The Journal of Specialised Translation, 11, 31–52.Google Scholar
  17. Gutt, E. A. (1989). Translation and relevance. PhD thesis. University of London, London.Google Scholar
  18. Gutt, E. A. (1990). A theoretical account of translation-without a translation theory. Target, 2(2), 135–164.CrossRefGoogle Scholar
  19. Gutt, E. A. (1991). Translation and relevance. Cognition and context. Oxford: Basil Blackwell.Google Scholar
  20. Gutt, E. A. (2000). Translation and relevance. In Cognition and context (2nd ed.). Manchester: St. Jerome.Google Scholar
  21. Hartsuiker, R. J., Pickering, M. J., & Veltkamp, E. (2004). Is syntax separate or shared between languages? Cross-linguistic syntactic priming in Spanish-English bilinguals. Psychological Science, 15(6), 409–414.CrossRefGoogle Scholar
  22. Hönig, H. G. (1991). Translation studies: The state of the art, the first James Holmes Symposium on Translation Studies. In Proceedings of the First James S Holmes symposium on translation studies (pp. 77–89). Amsterdam.Google Scholar
  23. Hvelplund, K. T. (2011). Allocation of cognitive resources in translation: An eye-tracking and key-logging study. PhD thesis. Copenhagen Business School, Frederiksberg, Denmark.Google Scholar
  24. Jakobsen, A. L. (2011). Tracking translators’ keystrokes and eye movements with Translog. In C. Alvstad, A. Hild, & E. Tiselius (Eds.), Methods and strategies of process research (pp. 37–55). Amsterdam: John Benjamins.CrossRefGoogle Scholar
  25. Jensen, K. T., Sjørup, A. C., & Balling, L. W. (2009). Effects of L1 syntax on L2 translation. In F. Alves, S. Göpferich, & I. M. Mees (Eds.), Methodology, technology and innovation in translation process research. A tribute to Arnt Lykke Jakobsen (pp. 319–336). Copenhagen: Samfundslitteratur.Google Scholar
  26. Kliffer, M., & Stroinska, M. (2013). Relevance theory and translation. Linguistica Atlantica, 25, 165–172.Google Scholar
  27. Läubli, S. (2014). Statistical modelling of human translation processes. Master’s thesis. University of Edinburgh, Edinburgh, UK.Google Scholar
  28. Levy, R. (2008). A noisy-channel model of rational human sentence comprehension under uncertain input. In Proceedings of the conference on empirical methods in natural language processing (pp. 234–243). Honolulu: Association for Computational Linguistics.Google Scholar
  29. Lörscher, W. (1992). Investigating the translation process. Meta, 37(3), 426–439.CrossRefGoogle Scholar
  30. Martínez-Gómez, P., Minocha, A., Huang, J., Carl, M., Bangalore, S., & Aizawa, A. (2014). Recognition of translator expertise using sequences of fixations and keystrokes. Paper presented at the Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA), Safety Harbor, FL.Google Scholar
  31. Mylonakis, M., Sima’an, K., & Hwa, R. (2007). Unsupervised estimation for noisy-channel models. In Proceedings of the 24th international conference on machine learning (pp. 665–672). Corvalis: ACM.Google Scholar
  32. Nagao, M. (1984). A framework of a mechanical translation between Japanese and English by analogy principle. In A. Elithorn & R. Beanerji (Eds.), Artificial and human intelligence: Edited review papers presented at the International NATO Symposium on Artificial and Human Intelligence, sponsored by the Special Programme Panel, held in Lyon, France, October 1981 (pp. 351–354). Amsterdam: North-Holland.Google Scholar
  33. Sang, Z. (2006). A relevance theory perspective on translating the implicit information in literary texts. Journal of Translation, 2(2), 43–60.Google Scholar
  34. Schaeffer, M., & Carl, M. (2013). Shared representations and the translation process: A recursive model. Translation and Interpreting Studies, 8(2), 169–190.CrossRefGoogle Scholar
  35. Schaeffer, M., Dragsted, B., Hvelplund, K. T., Balling, L. W., & Carl, M. (2016). Word translation entropy: Evidence of early target language activation during reading for translation. In M. Carl, S. Bangalore, & M. Schaeffer (Eds.), New directions in empirical translation process research (pp. 183–210). New York: Springer. isbn:978-3-319-20357-7.CrossRefGoogle Scholar
  36. Sekino, K. (2012). Investigating conceptual and procedural encodings in manual translation and in post-editing processes from Japanese to Portuguese.Google Scholar
  37. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communications. Urbana: University of Illinois Press.Google Scholar
  38. Singla, K., Orrego-Carmona, D., Gonzales, A. R., Carl, M., & Bangalore, S. (2014). Predicting post-editor profiles from the translation process. Paper presented at the The 11th Conference of the Association for Machine Translation in the Americas.Google Scholar
  39. Smith, K. (2002). Translation as secondary communication. The relevance theory perspective of Ernst-August Gutt. Acta Theologica, 22(1), 107–117.Google Scholar
  40. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. In Proceedings of the 7th Conference of the Association for Machine Translation in the Americas (pp. 223–231). Cambridge, MA.Google Scholar
  41. Somers, H. (2003). An overview of EBMT. In M. Carl & A. Way (Eds.), Recent advances in example-based machine translation. Dordrecht: Kluwer Academic Publishers.Google Scholar
  42. Sperber, D., & Wilson, D. (1993). Linguistic form and relevance. Lingua, 90(1), 1–25.Google Scholar
  43. Sperber, D., & Wilson, D. (1995). Postface to the second edition of Relevance: Communication and cognition. Oxford: Blackwell.Google Scholar
  44. Wilson, D. (1994). Relevance and understanding. In G. Brown, K. Malmkjær, A. Pollitt, & J. Williams (Eds.), Language and understanding (pp. 35–58). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Michael Carl
    • 1
  • Moritz Schaeffer
    • 2
  1. 1.Kent State UniversityKentUSA
  2. 2.University of MainzGermersheimGermany

Personalised recommendations