Skip to main content

Optimal Design and Simulation of High-Efficiency SnS-Based Solar Cell

  • Conference paper
  • First Online:
Innovations in Infrastructure

Abstract

Silicon-based solar cells are ruling the present photovoltaic market, but the associated high cost is a hindrance for competing with low-cost fossil fuel, coal-based energy sources. In semiconductor technology, efforts persist on sustainable materials. In this paper, tin sulfide is used as absorber layer for device modeling and discussed for an offset at the heterojunction, carrier density at the absorber/buffer layer. Different factors affecting solar cells outcomes are analyzed, mainly physical parameters of absorber and buffer layer. After optimization of different parameters of the cell module, the photo-conversion efficiency under the standard AM 1.5 illumination condition of the SnS-based photovoltaic cell is 24.87%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinsermsuksakul, P., Sun, L., Lee, S.W., Park, H.H., Kim, S.B., Yang, C.: Overcoming efficiency limitations of SnS based solar cells. Adv. Energy Mater 4, 1400496 (2014)

    Article  Google Scholar 

  2. Li, H., Cheng, S., Zhang, J., Huang, W., Zhou, H., Jia, H.: Fabrication of CdS/ZnS hetero junction for photovoltaic applications. World Journal of Condensed Matter Physics 5, 10–17 (2015)

    Article  Google Scholar 

  3. Reddy, K.T.R., Reddy, N.K., Miles, R.W.: Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90, 3041–3046 (2006)

    Google Scholar 

  4. Schneikart, A., Schimper, H.J., Klein, A., Jaegermann, W.: Efficiency limitations of thermally evaporated thin-film SnS solar cells. J. Phys. D Appl. Phys. 46, 305109 (2013)

    Article  Google Scholar 

  5. Kawano, Y., Chantana, J., Minemoto, T.: Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance. Curr. Appl. Phys. 15, 897–901 (2015)

    Article  Google Scholar 

  6. Burton, L.A., Walsh, A.: Band alignment in SnS thin film solar cells, possible origin of the low conversion efficiency. Appl. Phys. Lett. 102(1–3), 132111 (2013)

    Article  Google Scholar 

  7. Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    Article  Google Scholar 

  8. Reddy, V.M., Gedi, S., Park, C., Miles, R.W., Ramakrishna Reddy, K.T.: Development of sulphurized SnS thin film solar cells. Curr. Appl. Phys. 15, 588–598 (2015)

    Google Scholar 

  9. Hotje, U., Rose, C., Binnewies, M.: Lattice constants and molar volume in the system ZnS, ZnSe, CdS, CdSe. Solid State Sci. 5, 1259–1262 (2003)

    Article  Google Scholar 

  10. Devika, M., Ramakrishna Reddy, K.T., Koteeswara Reddy, N., Ramesh, K., Gopal, E.S.R., Gunasekhar, K.R.: The effect of substrate surface on the physical properties of SnS films. J. Appl. Phys. 100, 023518 (2006)

    Google Scholar 

  11. Ikuno, T., Suzuki, R., Kitazumi, K., Takahashi, N., Kato, N., Higuchi, K.: SnS thin film solar cells with Zn1−xMgxO buffer layers. Appl. Phys. Lett. 102, 193901 (2013)

    Article  Google Scholar 

  12. Park, H.H., Heasley, R., Sun, L., Steinmann, V., Jaramillo, R., Hartman, K.: Cooptimization of SnS absorber and Zn(O,S) buffer materials for improved solar cells. Prog. Photovolt. Res. Appl 23, 901–908 (2015)

    Article  Google Scholar 

  13. Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Brandt, R.E., Poindexter, J.R.: 3.88% efficient tin sulfide solar cells using congruent thermal evaporation. Adv. Mater 26, 7488–7492 (2014)

    Article  Google Scholar 

  14. Britt, J, Ferekides, C.: Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993)

    Article  Google Scholar 

  15. Yeon, D.H., Mohanty, B.C., Lee, S.M., Cho, Y.S.: Effect of band aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells. Sci. Rep. 5, 14353 (2015)

    Google Scholar 

  16. Madelung, O. Semiconductors: Data Handbook, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kumar Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakliwal, A., Pandey, S.K. (2019). Optimal Design and Simulation of High-Efficiency SnS-Based Solar Cell. In: Deb, D., Balas, V., Dey, R. (eds) Innovations in Infrastructure. Advances in Intelligent Systems and Computing, vol 757. Springer, Singapore. https://doi.org/10.1007/978-981-13-1966-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1966-2_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1965-5

  • Online ISBN: 978-981-13-1966-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics