Skip to main content

Emergent Reality in Quantum from Classical Transition

  • Chapter
  • First Online:
Book cover Quantum Reality and Theory of Śūnya
  • 345 Accesses

Abstract

The very fact that a quantum measurement changes the quantum state of a system in an uncontrollable way implies that the measurement does not reveal the objective reality that existed before the measurement. We argue that the nature of certain special quantum states that emerge due to decoherent interaction with the environment is such that one can measure the expectation value of any observable of the system in a single measurement. This can be done even when such states are a priori unknown. The possibility of measuring the expectation value of any observable, without any prior knowledge of the state, points to the objective reality of such states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wheeler JA, Zurek WH, editors. Quantum theory and measurement. Princeton: Princeton University Press; 1983. p. 182–213.

    Google Scholar 

  2. Auletta G. Foundations and interpretation of quantum theory. Singapore: World Scientific; 2000.

    Book  Google Scholar 

  3. Zeh HD, On the interpretation of measurement in quantum theory. Found Phys. 1970;1:69; Joos E, Zeh HD, The emergence of classical properties through interaction with the environment. Z Phys. 1985;D 59:223.

    Google Scholar 

  4. Giulini D, Joos E, Kiefer C, Kupsch J, Stamatescu I-O, Zeh HD, editors. Decoherence and the appearance of a classical world in quantum theory. Berlin/London: Springer; 1996.

    Google Scholar 

  5. Zurek WH. Decoherence and the transition from quantum to classical. Phys Today. 1991;44(10):36.

    Article  Google Scholar 

  6. Gogolin C. Environment-induced super selection without pointer states. Phys Rev. 2010;A81:051127.

    Google Scholar 

  7. Breuer H-P, Petruccione F. The theory of open quantum systems. Oxford: Oxford University Press; 2002.

    Google Scholar 

  8. Zurek WH. Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys. 2003;75:715.

    Article  Google Scholar 

  9. Zurek WH. Environment-induced superselection rules. Phys Rev. 1982;D26:1862.

    Google Scholar 

  10. Hornberger K. Introduction to decoherence theory. Lect Notes Phys. 2009;768:221.

    Article  Google Scholar 

  11. Zurek WH. Environment-induced superselection rules. Phys Rev. 1982;D26:1862–80.

    Google Scholar 

  12. Zurek WH. Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys. 2003;75:715–75.

    Article  Google Scholar 

  13. Zurek WH, Habib S, Paz JP. Coherent states via decoherence. Phys Rev Lett. 1993;70:1187.

    Article  Google Scholar 

  14. Eisert J. Exact decoherence to pointer states in free open quantum systems is universal. Phys Rev Lett. 2004;92:210401.

    Article  Google Scholar 

  15. Qureshi T. Decoherence, time scales and pointer states. Physica A. 2012;391:2286–90.

    Article  Google Scholar 

  16. Paz JP, Zurek WH. Quantum limit of decoherence: environment induced superselection of energy eigenstates. Phys Rev Lett. 1999;82:5181.

    Article  Google Scholar 

  17. Ollivier H, Poulin D, Zurek WH. Objective properties from subjective quantum states: environment as a witness. Phys Rev Lett. 2004;93:220401.

    Article  Google Scholar 

  18. Aharonov Y, Vaidman L. Measurement of the Schrodinger wave of a single particle. Phys Lett. 1993;A178:38.

    Article  Google Scholar 

  19. Aharonov Y, Anandan J, Vaidman L. Meaning of the wave function. Phys Rev. 1993;A47:4616.

    Article  Google Scholar 

  20. Vaidman L. Protective measurements. In: Greenberger D, Hentschel K, Weinert F, editors. Compendium of quantum physics: concepts, experiments, history and philosophy. Berlin/Heidelberg: Springer; 2009.

    Google Scholar 

  21. Hari Dass ND, Qureshi T. Critique of protective measurements. Phys Rev. 1999;A59:2590–601.

    Article  Google Scholar 

  22. Qureshi T, Hari Dass ND. Protective measurements: probing single quantum systems. Curr Sci. 2015;109:2023.

    Article  Google Scholar 

  23. Schlosshauer M. State disturbance and pointer shift in protective quantum measurements. Phys Rev. 2014;A90:052106.

    Article  Google Scholar 

  24. Gao S, editor. Protective measurement and quantum reality. Cambridge: Cambridge University Press; 2015.

    Google Scholar 

  25. Schlosshauer M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev Mod Phys. 2004;76:1267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tabish Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qureshi, T. (2019). Emergent Reality in Quantum from Classical Transition. In: Bhatt, S.R. (eds) Quantum Reality and Theory of Śūnya. Springer, Singapore. https://doi.org/10.1007/978-981-13-1957-0_3

Download citation

Publish with us

Policies and ethics