Development of Triplex Forming Oligonucleotide Including Artificial Nucleoside Analogues for the Antigene Strategy

  • Yosuke Taniguchi
  • Shigeki SasakiEmail author


The sequence-specific triplex formation against duplex DNA offers a potential basis for genome targeting technology, such as diagnostics, regulation of gene expression and sequencing technologies. In an antiparallel triplex DNA, a purine-rich triplex forming oligonucleotide (TFO) consisting of a dG, dA or T forms two reverse Hoogsteen hydrogen bonds with a GC, AT or AT base pair of the duplex DNA, respectively, with a high selectivity in a sequence specific manner. However, there is no natural nucleoside which can recognize the inverted CG and TA base pair of the duplex DNA. Therefore, the development of recognition molecules for the CG and TA inversion sites with a high stability and selectivity has been demanded for the triplex forming technology. In this chapter, we describe the design and synthesis of W-shaped nucleoside analogues (WNA-βT) and pseudo-dC derivatives (MeAP-ΨdC) for selective recognition of the TA and CG base pair, respectively, to expand the triplex-forming sequence.


Antiparallel triplex DNA Antigene Inhibition of gene expression Anti-proliferative effect Artificial nucleoside analogues Inversion site 


  1. 1.
    Thuong NT, Helene C (1993) Sequence-specific recognition and modification of double-helical DNA by oligonucleotides. Angew Chem Int Ed 32:666–690CrossRefGoogle Scholar
  2. 2.
    Chan PP, Glazer PM (1997) Triplex DNA: fundamentals, advances, and potential applications for gene therapy. J Mol Med 75:267–282CrossRefPubMedGoogle Scholar
  3. 3.
    Buchini S, Leumann CJ (2003) Recent improvements in antigene technology. Curr Opin Chem Biol 7:717–726CrossRefPubMedGoogle Scholar
  4. 4.
    Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90:1117–1130CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Sicence 238:645–650CrossRefGoogle Scholar
  6. 6.
    Rajagopal P, Feigon L (1989) NMR studies of triple-strand formation from the homopurine-homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4. Biochemistry 28:7859–7870CrossRefPubMedGoogle Scholar
  7. 7.
    Beal PA, Dervan PB (1991) Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251:1360–1363CrossRefPubMedGoogle Scholar
  8. 8.
    Beal PA, Dervan PB (1992) The influence of single base triplet changes on the stability of a pur.pur.pyr triple helix determined by affinity cleaving. Nucleic Acids Res 20:2773–2776CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang CY, Miller PS (1996) Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. Nucleic Acids Res 24:2606–2613CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rusling DA, Powers VEC, Ranasinghe RT, Wang Y, Osborne SD, Brown T, Fox KR (2005) Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res 33:3025–3032CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Semenyuk A, Darian E, Liu J, Majumdar A, Cuenoud B, Miller PS, MacKerell AD, Seidman MM (2010) Targeting of an interrupted polypurine:polypyrimidine sequence in mammalian cells by a triplex-forming oligonucleotide containing a novel base analogue. Biochemistry 49:7867–7878CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hari Y, Akabane M, Obika S (2013) 2′,4′-BNA bearing a chiral guanidinopyrrolidine containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex. Chem Commun 49:7421–7423CrossRefGoogle Scholar
  13. 13.
    Ohkubo A, Yamada K, Ito Y, Yoshimura K, Miyauchi K, Kanamori T, Masaki Y, Seio K, Yuasa H, Sekine M (2015) Synthesis and triplex-forming properties of oligonucleotides capable of recognizing corresponding DNA duplexes containing four base pairs. Nucleic Acids Res 43:5675–5686CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stilz HU, Dervan PB (1993) Specific recognition of CG base pairs by 2-deoxynebularine within the purine-purine-pyrimidine triple-helix motif. Biochemistry 32:2177–2185CrossRefPubMedGoogle Scholar
  15. 15.
    Parel SP, Leumann CJ (2001) Triple-helix formation in the antiparallel binding motif of oligodeoxynucleotides containing N9- and N7-2-aminopurine deoxynucleosides. Nucleic Acids Res 29:2260–2267CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kolganova NA, Shchyolkina AK, Chudinov AV, Zasedatelev AS, Florentiev VL, Timofeev EN (2012) Targeting duplex DNA with chimeric α,β-triplex-forming oligonucleotides. Nucleic Acids Res 40:8175–8185CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sasaki S, Yamauchi H, Nagatsugi F, Takahashi R, Taniguchi Y, Maeda M (2001) W-shape nucleic acid (WNA) for selective formation of nonnatural anti-parallel triplex including a TA interrupting site. Tetrahedron Lett 42(39):6915–6918Google Scholar
  18. 18.
    Sasaki S, Taniguchi Y, Takahashi R, Senko Y, Kodama K, Nagatsugi F, Maeda M (2003) Selective formation of stable triplexes including a TA or a CG interrupting site with new bicyclic nucleoside analogues (WNA). J Am Chem Soc 126:516–528CrossRefGoogle Scholar
  19. 19.
    Taniguchi Y, Nakamura A, Senko Y, Kodama K, Nagatsugi F, Sasaki S (2005) Expansion of triplex recognition codes by the use of novel bicyclic nucleoside derivatives (WNA). Nucleosides Nucleotides Nucleic Acids 24:823–827CrossRefPubMedGoogle Scholar
  20. 20.
    Taniguchi Y, Nakamura A, Senko Y, Nagatsugi F, Sasaki S (2006) Effects of halogenated WNA derivatives on sequence dependency for expansion of recognition sequences in non-natural-type triplexes. J Org Chem 71:2115–2122CrossRefPubMedGoogle Scholar
  21. 21.
    Nasr T, Taniguchi Y, Sasaki S (2007) Synthesis of 1′-phenyl substituted nucleoside analogs. Heterocycles 71:2659–2668CrossRefGoogle Scholar
  22. 22.
    Taniguchi Y, Togo M, Aoki E, Uchida Y, Sasaki S (2008) Synthesis of p-amino-WNA derivatives to enhance the stability of the anti-parallel triplex. Tetrahedron 64:7164–7170CrossRefGoogle Scholar
  23. 23.
    Taniguchi Y, Uchida Y, Takaki T, Aoki E, Sasaki S (2009) Recognition of the CG interrupting site by W-shaped nucleoside analogs (WNA) having the pyrozole ring in an anti-parallel triplex DNA. Bioorg Med Chem 17:6803–6810CrossRefPubMedGoogle Scholar
  24. 24.
    Aoki E, Taniguchi Y, Wada Y, Sasaki S (2012) Efficient DNA strand displacement by a W-shaped nucleoside analogue (WNA-βT) containing an ortho-methyl-substituted phenyl ring. Chembiochem 13:1152–1160CrossRefPubMedGoogle Scholar
  25. 25.
    Nasr T, Taniguchi Y, Takaki T, Okamura H, Sasaki S (2012) Properties of oligonucleotide with phenyl-substituted carbocyclic nucleoside analogues for the formation of duplex and triplex DNA. Nucleosides Nucleotides Nucleic Acids 31:8441–8460CrossRefGoogle Scholar
  26. 26.
    Taniguchi Y, Okamura H, Fujino N, Sasaki S (2013) Synthesis of 1′-phenyl-2-OMe ribose analogues connecting the thymine base at the 1′ position through a flexible linker for the formation of a stable anti-parallele triplex DNA. Tetrahedron 69:600–606CrossRefGoogle Scholar
  27. 27.
    Taniguchi Y, Tomizaki A, Matsueda N, Okamura H, Sasaki S (2015) Enhancement of TFO triplex formation by conjugation with pyrene via click chemistry. Chem Pharm Bull 63:920–926CrossRefPubMedGoogle Scholar
  28. 28.
    Shen C, Buck A, Polat B, Schmid-Kotsas A, Matuschek C, Gross H-J, Bachem M, Reske SN (2003) Triplex-forming oligodeoxynucleotides targeting survivin inhibit proliferation and induce apoptosis of human lung carcinoma cells. Cancer Gene Ther 10:403–410CrossRefPubMedGoogle Scholar
  29. 29.
    Zendegui JG, Vasquez KM, Tinsley JH, Kessler DJ, Hogan ME (1992) In vivo stability and kinetics of absorption and disposition of 3′ phosphopropyl amine oligonucleotides. Nucleic Acids Res 20:307–314CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gamper HB, Reed MW, Cox T, Virosco JS, Adams AD, Gall AA, Scholler JK, Meyer RB (1993) Facile preparation of nuclease resistant 3′ modified oligodeoxynucleotides. Nucleic Acids Res 21:145–150CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shin S, Sung B-J, Cho Y-S, Kim H-J, Ha N-C, Hwang J-I, Chung C-W, Jung Y-K, Oh B-H (2001) An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 40:1117–1123CrossRefPubMedGoogle Scholar
  32. 32.
    Taniguchi Y, Sasaki S (2012) An efficient antigene activity and antiproliferative effect by targeting the Bcl-2 or survivin gene with triplex forming oligonucleotides containing a W-shaped nucleoside analogue (WNA-βT). Org Biomol Chem 10:8336–8341CrossRefPubMedGoogle Scholar
  33. 33.
    Dittrich K, Gu J, Tinder R, Hogan M, Gao X (1994) T·C·G triplet in an antiparallel purine·purine·pyrimidine DNA triplex conformational studies by NMR. Biochemistry 33:4111–4120CrossRefPubMedGoogle Scholar
  34. 34.
    Durland RH, Rao TS, Revankar GR, Tinsley JH, Myrick MA, Seth DM, Rayford J, Singh P, Jayaraman K (1994) Binding of T and T analogs to CG base pairs in antiparallel triplexes. Nucleic Acids Res 22:3233–3240CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Okamura H, Taniguchi Y, Sasaki S (2013) N-(Guanidinoethyl)-2′-deoxy-5-methylisocytidine exhibits selective recognition of a CG interrupting site for the formation of anti-parallel triplexes. Org Biomol Chem 11:3918–3924CrossRefPubMedGoogle Scholar
  36. 36.
    Okamura H, Taniguchi Y, Sasaki S (2014) An isocytidine derivative with a 2-amino-6-methylpyridine unit for selective recognition of the CG interrupting site in an antiparallel triplex DNA. Chembiochem 15:2374–2378CrossRefPubMedGoogle Scholar
  37. 37.
    Okamura H, Taniguchi Y, Sasaki S (2016) Aminopyridinyl-pseudodeoxycytidine derivatives selectively stabilize antiparallel triplex DNA with multiple CG inversion sites. Angew Chem Int Ed. 55:12445-12449Google Scholar
  38. 38.
    Kim H-J, Leal NA, Benner SA (2009) 2′-deoxy-1-methylpseudocytidine, a stable analog of 2′-deoxy-5-methylisocytidine. Bioorg Med Chem 17:3728–3232CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hildbrand S, Blaser A, Parel SP, Leumann CJ (1997) 5-substituted 2-aminopyridine C-nucleosides as protonated cytidine equivalents: increasing efficiency and selectivity in DNA triple-helix formation. J Am Chem Soc 119:5499–5511CrossRefGoogle Scholar
  40. 40.
    Ito H, Kyo S, Kanaya T, Takakura M, Inoue M, Namiki M (1998) Expression of human telomerase subunits and correlation with telomerase activity in urothelial cancer. Clin Cancer Res 4:1603–1608PubMedGoogle Scholar
  41. 41.
    Takakura M, Kyo S, Kanaya T, Hirano H, Takeda J, Yutsudo M, Inoue M (1999) Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res 59:551–557PubMedGoogle Scholar
  42. 42.
    Govan JM, Uprety R, Hemphill J, Lively MO, Deiters A (2012) Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells. ACS Chem Biol 7:1247–1256CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations