Skip to main content

High Speed, High-Reliability Edge Combiner Frequency Multiplier for Silicon on Chip

  • Conference paper
  • First Online:
Microelectronics, Electromagnetics and Telecommunications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 521))

  • 988 Accesses

Abstract

Due to the advancement in technology, the designing the high-speed frequency multiplier plays the vital role. In this paper, the high speed, the high-reliability frequency multiplier is proposed. By employing an overlap canceller in edge combiner, the high speed highly reliable structure is achieved. The delay locked loop (DLL) has been used to generate a wide range of frequency and high-frequency range by applying logical effort, a proposed frequency minimize a delay which leads to deterministic jitter. In proposing the high speed, high-reliability edge combiner frequency multiplier for silicon on chip process technology is fabricated till 0.13 µm and the output is in the range of 100 MHz–3.3 GHz. Here the power consumption is achieved as 2.9 µw/MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burd TD, Pering TA, Stratakos AJ, Brodersen RW (2000) A dynamic voltage scaled microprocessor system. IEEE J Solid-State Circuits 35(11):1571–1580

    Article  Google Scholar 

  2. Cao Z, Foo B, He L, van der Schaar M (2010) Optimality and improvement of dynamic voltage scaling algorithms for multimedia applications. IEEE Trans Circuits Syst I Reg Papers 57(3):681–690

    Article  MathSciNet  Google Scholar 

  3. Elgebaly M, SachdevM (2007) Variation-aware adaptive voltage scaling system. IEEE Trans Very Large Scale Integr (VLSI) Syst 15(5):560–571

    Article  Google Scholar 

  4. Kim C, Hwang IC, Kang SM (2002) A low-power small-area, 7.28-ps-jitter 1-GHz DLL-based clock generator. IEEE J Solid-State Circuits 37(11):1414–1420

    Article  Google Scholar 

  5. Chien G, Gray PR (2000) A 900-MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications. IEEE J Solid-State Circuits 35(12):1996–1999

    Article  Google Scholar 

  6. Lee TC, Hsiao KJ (2006) The design and analysis of a DLL-based frequency synthesizer for UWB application. IEEE J Solid-State Circuits 41(6):1245–1252

    Article  Google Scholar 

  7. Chuang CN, Liu SI (2007) A 40 GHz DLL-based clock generator in 90 nm MOS Technology. In: IEEE International Solid-State Circuit Conferences Digest of Technical Papers. pp 178–595

    Google Scholar 

  8. Maulik PC, Mercer DA (2007) A DLL-based programmable clock multiplier in 0.18-μm CMOS with −70 dBc reference spur. IEEE J. Solid-State Circuits 42(8):1642–1648

    Article  Google Scholar 

  9. Wang C, Tseng YL, She HC, Hu R (2004) A 1.2 GHz programmable DLL-based frequency multiplier for wireless applications. IEEE Trans Very Large Scale Integr (VLSI) Syst 12(12):1377–1381

    Google Scholar 

  10. Kim JH, Kwak YH, Kim M, Kim SW, Kim C (2006) A 120-MHz-1.8-GHz CMOS DLL-based clock generator for dynamic frequency scaling. IEEE J Solid-State Circuits 41(9):2077–2082

    Article  Google Scholar 

  11. Kalaiyarasi M, Prakasam P (2015) Proposed low power and area efficient full adder using CMOS 180 nm technology. Int J Appl Eng Res 10(9):7103–7108

    Google Scholar 

  12. Koo J, Ok S, Kim C (2009) A low-power programmable DLL-based clock generator with wide-range anti harmonic lock. IEEE Trans Circuits Syst II Exp Briefs 56(1):21–25

    Article  Google Scholar 

  13. Ok S, Chung K, Koo J, Kim C (2010) An antiharmonic, programmable, DLL-based frequency multiplier for dynamic frequency scaling. IEEE Trans Very Large Scale Integr (VLSI) Syst 18(7):1130–1134

    Article  Google Scholar 

  14. Ryu K, Jung DH, Jung SO (2010) A DLL based clock generator for low-power mobile SoCs. IEEE Trans Consum Electron 56(3):1950–1956

    Article  Google Scholar 

  15. Ryu K, Jung DH, Jung SO (2012) A DLL with dual edge triggered phase detector for fast lock and low jitter clock generator. IEEE Trans Circuits Syst I Reg Papers 59(9):1860–1870

    Article  MathSciNet  Google Scholar 

  16. Sutherland I, Sproull RF, Harris D (1999) Logical effort: designing fast CMOS circuits. Morgan Kaufmann, San Mateo, CA, USA

    Google Scholar 

  17. Gao X, Klumperink EAM, Geraedts PFJ, Nauta B (2009) Jitter analysis and a benchmarking figure-of-merit for phase-locked loops. IEEE Trans Circuits Syst II, Exp Briefs 56(2):117–121

    Google Scholar 

  18. Hwang S, Kim KM, Kim J. Kim SW, Kim C (2013) A self calibrated DLL-based clock generator for an energy-aware EISC processor. IEEE Trans Very Large Scale (VLSI) Syst 21(3):575–579

    Article  Google Scholar 

  19. Elshazly A Inti R, Young B, Hanumolu PK Clock multiplication techniques using digital multiplying delay-locked loops. IEEE J Solid-State Circuits 48(6):1416–1428

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakasam Periasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pichamuthu, R., Periasamy, P. (2019). High Speed, High-Reliability Edge Combiner Frequency Multiplier for Silicon on Chip. In: Panda, G., Satapathy, S., Biswal, B., Bansal, R. (eds) Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, vol 521. Springer, Singapore. https://doi.org/10.1007/978-981-13-1906-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1906-8_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1905-1

  • Online ISBN: 978-981-13-1906-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics