Skip to main content

Introduction to Industrial Wastes Containing Organic and Inorganic Pollutants and Bioremediation Approaches for Environmental Management

Abstract

Industrial wastes are one of the sources of environmental pollution. Industrial waste contains a variety of highly toxic organic and inorganic pollutants and thus may cause serious toxicity in the living organisms. Therefore, the adequate treatment and management of such hazardous wastes to protect the environment and public health. Bioremediation can be a suitable alternative to the physicochemical approaches, which are environmentally destructive and costly and may cause secondary pollution. It has been approved by the US Environmental Protection Agency (USEPA) as an eco-friendly waste management technique that revitalizes the contaminated environment and promotes sustainable development. Therefore, this chapter introduces the toxicity profile of different industrial wastes containing various organic and inorganic pollutants and bioremediation technologies such as microbial bioremediation, phytoremediation, enzymatic remediation, electro-bioremediation, nano-bioremediation, etc. with limitations and challenges.

Keywords

  • Industrial waste
  • Organic pollutants
  • Inorganic pollutants
  • Pollution
  • Toxicity
  • Bioremediation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-1891-7_1
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-1891-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    CAS  CrossRef  Google Scholar 

  • Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6:389–394

    CAS  CrossRef  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59

    CAS  CrossRef  Google Scholar 

  • Arora PK, Srivastava A, Garg SK, Singh VP (2018) Recent advances in degradation of chloronitrophenols. Bioresour Technol 250C:902–909

    CrossRef  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2017a) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-017-0490-x

    CrossRef  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017b) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    CrossRef  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017c) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    CrossRef  Google Scholar 

  • Bharagava RN, Mani S, Mullab SI, Saratale GD (2018a) Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol Environ Saf 156:166–175

    CAS  CrossRef  Google Scholar 

  • Bharagava RN, Purchase D, Saxena G, Mulla SI (2018b)Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. In: Das S, Dash H (eds) Microbial diversity in the genomic era, 1st edn. Academic Press, Elsevier. https://doi.org/10.1016/B978-0-12-814849-5.00026-5

    CrossRef  Google Scholar 

  • Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS (2012) Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435–436:563–566

    CrossRef  Google Scholar 

  • Carvalho PN, Arias CA, Brix H (2017) Constructed wetlands for water treatment: new developments. Water 9:397

    CrossRef  Google Scholar 

  • Cecchin I, Krishna R, Thom A, Tessaro EF, Schnaid F (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeterior Biodegrad 119:419–428

    CAS  CrossRef  Google Scholar 

  • Chandra R, Bharagava RN, Rai V (2008) Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresour Technol 99:4648–4660

    CAS  CrossRef  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit HJ (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant (CETP) during the degradation and detoxification of tannery wastewater. Bioresour Technol 102(3):2333–2341

    CAS  CrossRef  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 1–30

    CrossRef  Google Scholar 

  • Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-016-9391-0

    CAS  CrossRef  Google Scholar 

  • Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14

    CrossRef  Google Scholar 

  • Ge Z, Wu L, Zhang F, He Z (2015) Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J Power Sources 297:260–264

    CAS  CrossRef  Google Scholar 

  • Gill RT, Harbottle MJ, Smith JWN, Thornton SF (2014) Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107:31–42

    CAS  CrossRef  Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396

    CAS  CrossRef  Google Scholar 

  • Gude VG (2016) Wastewater treatment in microbial fuel cells e an overview. J Clean Prod 122:287–307

    CAS  CrossRef  Google Scholar 

  • Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manag 90:3451–3457

    CAS  CrossRef  Google Scholar 

  • Khan A, Sharif M, Ali A, Shah SNM, Mian IA, Wahid F, Jan B, Adnan M, Nawaz S, Ali N (2014) Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. Am J Plant Sci 5:1578–1586

    CrossRef  Google Scholar 

  • Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341

    CAS  CrossRef  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439

    CAS  CrossRef  Google Scholar 

  • Li T, Guo S, Wu B, Li F, Niu Z (2010) Effect of electric intensity on the microbial degradation of petroleum pollutants in soil. J Environ Sci 22:1381–1386

    CAS  CrossRef  Google Scholar 

  • Li Y, Wu Y, Puranik S, Lei Y, Vadas T, Li B (2014) Metals as electron acceptors in single-chamber microbial fuel cells. J Power Sources 269:430–439

    CAS  CrossRef  Google Scholar 

  • Lintern M, Anand R, Ryan C (2013) Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nature Commun. Available at: www.nature.com/ncomms/2013/131022/ncomms3614ncomms3614.ht

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    CAS  CrossRef  Google Scholar 

  • Ma Y, Oliviera RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in 1206 multi-metal contaminated soil. J Environ Manag 156:62–69

    CAS  CrossRef  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 26:111–121

    CrossRef  Google Scholar 

  • Mao X, Han FX, Shao X, Guo K, McComb J, Arslan Z, Zhang Z (2016) Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil. Ecotoxicol Environ Saf 125:16–24

    CAS  CrossRef  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    CAS  CrossRef  Google Scholar 

  • Martınez-Prado MA, Unzueta-Medina J, Perez Lopez ME (2014) Electrobioremediation as a hybrid technology to treat soil contaminated with total petroleum hydrocarbons. Rev Mex Ing Quím 13(1):113–127

    Google Scholar 

  • Maszenan AM, Liu Y, Ng WJ (2011) Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnol Adv 29:111–123

    CAS  CrossRef  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    CAS  CrossRef  Google Scholar 

  • Mendez-Paz D, Omil F, Lema JM (2005) Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous. Water Res 39:771–778

    CAS  CrossRef  Google Scholar 

  • Paisio CE, Talano MA, González PS, Busto VD, Talou JR, Agostini E (2012) Isolation and characterization of a Rhodococcus strain with phenol-degrading ability and its potential use for tannery effluent biotreatment. Environ Sci Pollut Res Int 19(8):3430–3439

    CAS  CrossRef  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    CAS  CrossRef  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    CAS  CrossRef  Google Scholar 

  • Reshma SV, Spandana S, Sowmya M (2011) Bioremediation technologies. World Congress of Biotechnology, India

    Google Scholar 

  • Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soil: a review. Crit Rev Environ Sci Technol 35:115–192

    CAS  CrossRef  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    CAS  CrossRef  Google Scholar 

  • Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10

    CrossRef  Google Scholar 

  • Saxena G, Bharagava RN (2016) Ram Chandra: advances in biodegradation and bioremediation of industrial waste. Clean Technol Environ Policy 18:979–980. https://doi.org/10.1007/s10098-0151084-9

    CrossRef  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    CrossRef  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    CrossRef  Google Scholar 

  • Saxena G, Bharagava RN, Kaithwas G, Raj A (2015) Microbial indicators, pathogens and methods for their monitoring in water environment. J Water Health 13:319–339. https://doi.org/10.2166/wh.2014.275

    CrossRef  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    CAS  CrossRef  Google Scholar 

  • Stephenson C, Black CR (2014) One step forward, two steps back: the evolution of phytoremediation into commercial technologies. Biosci Horiz 7:1–15

    CAS  CrossRef  Google Scholar 

  • Stottmeister UA, Wießner P, Kuschk U, Kappelmeyer M, Kastner O, Bederski RA, Muller H, Moormann (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    CAS  CrossRef  Google Scholar 

  • Ullah A, Heng S, Munis M, Hussain F, Shah F, Xiyan Y (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2015.05.001

    CAS  CrossRef  Google Scholar 

  • Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2(3):530–549

    CAS  CrossRef  Google Scholar 

  • Wan X, Lei M, Chen T (2016) Cost-benefit calculation 1383 of phytoremediation technology for heavy-metal-contaminated soil. Sci Total Environ 563–564:796–802

    CrossRef  Google Scholar 

  • Wang YC, Ko CH, Chang FC, Chen PY, Liu TF, Sheu YS, shih TL, Teng CJ (2011) Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass Bioenergy 35:50–58

    CAS  CrossRef  Google Scholar 

  • Wick LY, Shi L, Harms H (2007) Electro-bioremediation of hydrophobic organic soilcontaminants: a review of fundamental interactions. Electrochim Acta 52(10):3441–3448

    CAS  CrossRef  Google Scholar 

  • Yadav AK, Dash P, Mohanty A, Abbassi R, Mishra BK (2012) Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol Eng 47:126–131

    CrossRef  Google Scholar 

  • Yan F, Reible D (2015) Electro-bioremediation of contaminated sediment by electrode enhanced capping. J Environ Manag 15(155):154–161

    CrossRef  Google Scholar 

  • Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013a) Long-term performance of literscale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47(9):4941–4948

    CAS  CrossRef  Google Scholar 

  • Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013b) In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour Technol 136:316–321

    CAS  CrossRef  Google Scholar 

  • Zhang DQ, Jinadasa KBSN, Gersberg RM, Liu Y, Tan SK, Ng WJ (2015) Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). J Environ Sci 30:30–46

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgment

The financial support as “Major Research Projects” (Grant No.: EEQ/2017/000407) from the “Science and Engineering Research Board” (SERB), Department of Science and Technology (DOST), Government of India (GOI), New Delhi, India, and University Grant Commission (UGC) Fellowship received by Mr. Gaurav Saxena for doctoral studies is duly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bharagava, R.N., Saxena, G., Mulla, S.I. (2020). Introduction to Industrial Wastes Containing Organic and Inorganic Pollutants and Bioremediation Approaches for Environmental Management. In: Saxena, G., Bharagava, R. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-1891-7_1

Download citation