Skip to main content

Endothelial Cell Dynamics during Blood Vessel Morphogenesis

  • Chapter
  • First Online:
Zebrafish, Medaka, and Other Small Fishes
  • 723 Accesses

Abstract

Blood vessels, together with the heart, have a fundamental role in supporting the metabolic demands of tissues not only during development but also in adults. New blood vessels are frequently generated through angiogenesis when new vessels emerge from pre-existing ones (Fig. 2.1a). Initially, endothelial cells (ECs) lining an existing vessel are selected to become tip cells to spearhead the formation of new vascular sprouts. New sprouts grow through EC proliferation and the polarized collective migration of both tip and trailing stalk cells into the avascular tissue. In order to generate a network of interconnecting vessel segments, tip cells anastomose with neighboring tip cells to establish new vascular loops. Importantly, vascular sprouts develop into tubes through which oxygen, metabolites, cells, and waste products can circulate around the body. Finally, the tubular network of blood vessels are either maintained or, depending on the tissue requirements in which the vessels pervade, remodeled through pruning into a more refined vascular network that carries blood flow optimally to tissues (Fig. 2.1b).

Over the past few decades, many key signaling pathways that regulate blood vessel development have been identified using primarily the mouse as the model organism. These include the Neuropilin (NRP)/Vascular Endothelial Growth Factor (VEGF)/Vascular Endothelial Growth Factor Receptor (VEGFR), Jagged/Delta-like/Notch, Transforming Growth Factor β (TGFβ)/Bone Morphogenic Protein (BMP) and EphrinB/EphB signaling cascades (Adams RH, Alitalo K. Nat Rev Mol Cell Biol 8:464–478, 2007; Potente M, Makinen T. Nat Rev Mol Cell Biol 18:477, 2017). Although these studies have uncovered the fundamental principles of angiogenesis, temporal information on the cellular dynamics of angiogenesis has been lacking due to difficulties in performing live imaging in mouse embryos and tissues. These challenges are alleviated by the use of zebrafish, whose embryos develop ex utero, are optically transparent and are therefore highly suited for live imaging. Combined with recent advances in imaging techniques and the development of fluorescent biosensors or reporters, it is now possible to observe the dynamics of ECs at cellular and subcellular resolution as blood vessel morphogenesis takes place. Imaging vascular morphogenesis in the zebrafish embryo has been indispensable in the identification of morphogenetic events such as apical membrane invagination and the elucidation of the cellular mechanisms of anastomosis and vessel pruning, which are dynamic processes that are difficult to visualize and investigate in mouse models.

In this chapter, I will summarize recent findings from zebrafish studies that highlight the dynamic nature of ECs during angiogenesis and vessel remodeling and focus on how the actin cytoskeleton regulates EC morphogenesis and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ, Pham VN, Vogel AM, Weinstein BM, Roman BL (2008) Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Dev Biol 318:258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aydogan V, Lenard A, Denes AS, Sauteur L, Belting H-G, Affolter M (2015) Endothelial cell division in angiogenic sprouts of differing cellular architecture. Biol Open 4:1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baeyens N, Mulligan-Kehoe MJ, Corti F, Simon DD, Ross TD, Rhodes JM, Wang TZ, Mejean CO, Simons M, Humphrey J, Schwartz MA (2014) Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc Natl Acad Sci 111:17308

    Article  CAS  PubMed  Google Scholar 

  • Baeyens N, Nicoli S, Coon BG, Ross TD, Van den Dries K, Han J, Lauridsen HM, Mejean CO, Eichmann A, Thomas J-L, Humphrey JD, Schwartz MA (2015) Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. elife 4:1

    Article  Google Scholar 

  • Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA (2016) Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest 126:821

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica-Krezel L, Heisenberg C-P, Raz E (2006) Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 11:613

    Article  CAS  PubMed  Google Scholar 

  • Blum Y, Belting H-G, Ellertsdottir E, Herwig L, Lüders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316:312

    Article  CAS  PubMed  Google Scholar 

  • Bussmann J, Wolfe SA, Siekmann AF (2011) Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development 138:1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charras GT (2008) A short history of blebbing. J Microsc 231:466

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Jiang L, Li C, Hu D, J-w B, Cai D, J-l D (2012) Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLoS Biol 10:e1001374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins C, Osborne LD, Guilluy C, Chen Z, O’Brien ET, Reader JS, Burridge K, Superfine R, Tzima E (2014) Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells. Nat Commun 5:3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23(11):1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coon BG, Baeyens N, Han J, Budatha M, Ross TD, Fang JS, Yun S, Thomas J-L, Schwartz MA (2015) Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol 208:975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa G, Harrington KI, Lovegrove HE, Page DJ, Chakravartula S, Bentley K, Herbert SP (2016) Asymmetric division coordinates collective cell migration in angiogenesis. Nat Cell Biol 18:1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraccaroli A, Franco CA, Rognoni E, Neto F, Rehberg M, Aszodi A, Wedlich-Söldner R, Pohl U, Gerhardt H, Montanez E (2012) Visualization of endothelial actin cytoskeleton in the mouse retina. PLoS One 7:e47488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco CA, Jones ML, Bernabeu MO, Geudens I, Mathivet T, Rosa A, Lopes FM, Lima AP, Ragab A, Collins RT, Phng L-K, Coveney PV, Gerhardt H (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 13:e1002125

    Article  PubMed  PubMed Central  Google Scholar 

  • Gebala V, Collins R, Geudens I, Phng L-K, Gerhardt H (2016) Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol 18:443

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz JG, Steed E, Ferreira RR, Roth S, Ramspacher C, Boselli F, Charvin G, Liebling M, Wyart C, Schwab Y, Vermot J (2014) Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep 6:799

    Article  CAS  PubMed  Google Scholar 

  • Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263. Nature Publishing Group

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herwig L, Blum Y, Krudewig A, Ellertsdottir E, Lenard A, Belting H-G, Affolter M (2011) Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Current Biology: CB 21:1942

    Article  CAS  PubMed  Google Scholar 

  • Hultin S, Zheng Y, Mojallal M, Vertuani S, Gentili C, Balland M, Milloud R, Belting H-G, Affolter M, Helker CSM, Adams RH, Herzog W, Uhlén P, Majumdar A, Holmgren L (2014) AmotL2 links VE-cadherin to contractile actin fibres necessary for aortic lumen expansion. Nat Commun 5:3743

    Article  CAS  PubMed  Google Scholar 

  • Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164:811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953. Nature Publishing Group

    Article  CAS  PubMed  Google Scholar 

  • Kamei M, Brian Saunders W, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nat Cell Biol 442:453

    CAS  Google Scholar 

  • Kochhan E, Lenard A, Ellertsdottir E, Herwig L, Affolter M, Belting H-G, Siekmann AF (2013) Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos. PLoS One 8:e75060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz H, Gärtner T, Eggli PS, Christ B (1996) First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 173:133

    Article  CAS  PubMed  Google Scholar 

  • Kwon H-B, Wang S, Helker CSM, Rasouli SJ, Maischein H-M, Offermanns S, Herzog W, Stainier DYR (2016) In vivo modulation of endothelial polarization by Apelin receptor signalling. Nat Commun 7:11805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307

    Article  CAS  Google Scholar 

  • Lenard A, Ellertsdottir E, Herwig L, Krudewig A, Sauteur L, Belting H-G, Affolter M (2013) In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25:492

    Article  CAS  PubMed  Google Scholar 

  • Lenard A, Daetwyler S, Betz C, Ellertsdottir E, Belting H-G, Huisken J, Affolter M (2015) Endothelial cell self-fusion during vascular pruning. PLoS Biol 13:e1002126

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z, Carter DAL, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad RK, Evans PC, Ainscough JFX, Beech DJ (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515(7526):279–282. Nature Publishing Group

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima H, Yamamoto K, Agarwala S, Terai K, Fukui H, Fukuhara S, Ando K, Miyazaki T, Yokota Y, Schmelzer E, Belting H-G, Affolter M, Lecaudey V, Mochizuki N (2017) Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev Cell 40:523. Elsevier Inc

    Article  CAS  PubMed  Google Scholar 

  • Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND (2010) MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464:1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paluch EK, Raz E (2013) The role and regulation of blebs in cell migration. Curr Opin Cell Biol 25:582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panciera T, Azzolin L, Cordenonsi M, Piccolo S (2017) Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 18:758

    Article  CAS  PubMed  Google Scholar 

  • Pelton JC, Wright CE, Leitges M, Bautch VL (2014) Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation. Development 141:4121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phng LK, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140:4031

    Article  CAS  PubMed  Google Scholar 

  • Phng L-K, Gebala V, Bentley K, Philippides A, Wacker A, Mathivet T, Sauteur L, Stanchi F, Belting H-G, Affolter M, Gerhardt H (2015) Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization. Dev Cell 32:123

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potente M, Makinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18:477. Nature Publishing Group

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ (2011) Life at the leading edge. Cell 145:1012. Elsevier Inc

    Article  CAS  PubMed  Google Scholar 

  • Sauteur L, Krudewig A, Herwig L, Ehrenfeuchter N, Lenard A, Affolter M, Belting H-G (2014) Cdh5/VE-cadherin promotes endothelial cell Interface elongation via cortical actin polymerization during Angiogenic sprouting. Cell Rep 9:504. The Authors

    Article  CAS  PubMed  Google Scholar 

  • Sauteur L, Affolter M, Belting H-G (2017) Distinct and redundant functions of Esama and VE-cadherin during vascular morphogenesis. Development 144:1554

    Article  CAS  Google Scholar 

  • Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445:781

    Article  CAS  PubMed  Google Scholar 

  • Sugden WW, Meissner R, Aegerter-Wilmsen T, Tsaryk R, Leonard EV, Bussmann J, Hamm MJ, Herzog W, Jin Y, Jakobsson L, Denz C, Siekmann AF (2017) Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat Cell Biol 19:653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426

    Article  CAS  Google Scholar 

  • Wakayama Y, Fukuhara S, Ando K, Matsuda M, Mochizuki N (2015) Cdc42 mediates bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial Filopodia in zebrafish. Dev Cell 32:109. Elsevier Inc

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kaiser MS, Larson JD, Nasevicius A, Clark KJ, Wadman SA, Roberg-Perez SE, Ekker SC, Hackett PB, McGrail M, Essner JJ (2010) Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137:3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley DM, Kim J-D, Hao J, Hong CC, Bautch VL, Jin S-W (2011) Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol 13:686

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME, Bussmann J, Meyen D, Raz E, Adams RH, Siekmann AF (2014) Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5:5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JA, Castranova D, Pham VN, Weinstein BM (2015) Single-cell analysis of endothelial morphogenesis in vivo. Development 142:2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Henry Belting for critical reading of the manuscript. I apologize to authors whose work in this research area was not cited due to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Kun Phng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phng, LK. (2018). Endothelial Cell Dynamics during Blood Vessel Morphogenesis. In: Hirata, H., Iida, A. (eds) Zebrafish, Medaka, and Other Small Fishes. Springer, Singapore. https://doi.org/10.1007/978-981-13-1879-5_2

Download citation

Publish with us

Policies and ethics