Skip to main content

Plant-Associated Microbial Interactions in the Soil Environment: Role of Endophytes in Imparting Abiotic Stress Tolerance to Crops

  • Chapter
  • First Online:
Advances in Crop Environment Interaction

Abstract

Plant-associated microbial interactions involve the great array of root/shoot dynamic environments known as the rhizosphere (in soil) and phyllosphere (plant aerial parts). Here, microbial communities are under multi-prolonged interactions within themselves as well as with plants to improve plant adaptation and tolerance to environmental constraints. Among the different kinds of plant-associated microbial interactions, beneficial “endophytic interactions” occur in rhizosphere as well as in phyllosphere habitats, wherein diverse group of bacterial and fungal communities colonizes plant inter- and intracellular spaces. Structural composition of endophytic microbial communities with respect to few bacterial groups and fungal species has been characterized. Identity of their large diversity and ecological functions of large majority of microbial species in the plant endophytic microbiome are remaining unknown. A variety of distinct abiotic stresses in the soil environment is known to occur singly or in combinations, causing both general and specific detrimental effects on plant growth and development. In addition to the direct negative impact on growth of the plants, abiotic stresses known to affect the rhizosphere soil as well as plant-associated beneficial microbial interactions (symbiotic and endophytic interactions) and thereby crop yield in agriculture. The so-called term induced systemic tolerance (IST) has been put forward to explain different possible mechanisms exerted by the rhizo-/endophytic bacterial and fungal- or microbe-mediated systemic tolerance against abiotic stresses in plants. Hence, there is a necessity for redefining as well as rethinking of modern agronomic practices with our current perceptive of the significance of plant-associated beneficial microbial communities (rhizosphere, symbiotic, and endophytic interactions) for plant productivity and health under abiotically stressed environments. In this present chapter, we converse the impact of abiotic stresses upon soil and plant-microbial beneficial interactions; diversity exists in the endophytic microbial interactions (rhizobacterial endophytes, Archaea, fungal endophytes, and beneficial viruses) and their possible mechanisms including habitat-adapted symbiosis involved in promoting growth, development, and tolerance to abiotic stresses in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci 263:107–115

    Article  CAS  PubMed  Google Scholar 

  • Adams AE, Kazenel MR, Rudgers JA (2017) Does a foliar endophyte improve plant fitness under flooding? Plant Ecol 218(6):711–723

    Article  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soil 46(1):45–55

    Article  CAS  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiri R, Nikbakht A, Rahimmalek M, Hosseini H (2017) Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of Mycorrhizal fungi under water deficit conditions. J Plant Growth Regul 36(2):502–515

    Article  CAS  Google Scholar 

  • Andrés-Barrao C, Lafi FF, Alam I, Zélicourt AD, Eida AA, Bokhari A, Alzubaidy HS, Bajic VB, Hirt H, Saad M (2017) Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium. Front Microbiol 8:2023

    Article  PubMed  PubMed Central  Google Scholar 

  • Appoloni S, Lekberg Y, Tercek MT et al (2008) Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microb Ecol 56:649–659

    Article  PubMed  Google Scholar 

  • Azad K, Kaminskyj S (2016) A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 68(1–3):73–78

    Article  CAS  Google Scholar 

  • Baker BJ et al (2010) Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci USA 107(19):8806–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakken LR, Bergaust L, Liu B, Frostegard A (2012) Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos Trans R Soc B 367:1226–1234

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soil 46(1):45–55

    Article  CAS  Google Scholar 

  • Barea JM, Azco’n R, Azco’n-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 351–371

    Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Bell C, McIntyre N, Cox S, Tissue D, Zak J (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert grassland. Microbial Ecol 56:153–167

    Article  Google Scholar 

  • Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218

    Article  PubMed  Google Scholar 

  • Berthelot C, Blaudez D, Leyval C (2017) Differential growth promotion of poplar and birch inoculated with three dark septate endophytes in two trace element-contaminated soils. Int J Phytoremediation 19(12):1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Glob Chang Biol 20:2971–2982

    Article  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Buscot F, Varma A (2005) Microorganisms in soils: roles in genesis and functions. Springer, Heidelberg

    Google Scholar 

  • Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46:186–195

    Article  CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microbial Ecol 41(3):252–263

    Article  CAS  Google Scholar 

  • Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zou J, Hu Z, Chen H, Lu Y (2014) Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: summary of available data. Agric For Meteorol 198:335–346

    Article  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92(6):fiw083

    Article  PubMed  CAS  Google Scholar 

  • Coleman-Derr D, Tringe SG (2014) Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol 5:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbiol Ecol 62(1):188–197

    Article  Google Scholar 

  • Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78(24):8587–8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregger MA, Sanders NJ, Dunn RR, Classen AT (2014) Microbial communities respond to experimental warming, but site matters. Peer J 2:e358

    Article  PubMed  PubMed Central  Google Scholar 

  • Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Du X, Ren Y, Wylie SJ (2017a) Metabolic responses of endophytic Nicotiana benthamiana plants experiencing water stress. Environ Exp Bot 143:59–71

    Article  CAS  Google Scholar 

  • Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Wylie SJ (2017b) A simple and rapid in vitro test for large-scale screening of fungal endophytes from drought-adapted Australian wild plants for conferring water deprivation tolerance and growth promotion in Nicotiana benthamiana seedlings. Arch Microbiol 21:1–4

    Google Scholar 

  • De Meyer SE, De Beuf K, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–1

    Article  CAS  Google Scholar 

  • DeAngelis KM, Pold G, Topcuoglu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54(3):163–172

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Doty SL (2017) Functional importance of the plant endophytic microbiome: implications for agriculture, forestry, and bioenergy. In: Functional importance of the plant microbiome. Springer, Cham, pp 1–5

    Chapter  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Durán J, Morse JL, Groffman PM, Campbell JL, Christenson LM, Driscoll CT, Fahey TJ, Fisk MC, Mitchell MJ, Templer PH (2014) Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests. Glob Chang Biol 20(11):3568–3577

    Article  PubMed  Google Scholar 

  • Elhindi K, Sharaf El Din A, Abdel-Salam E, Elgorban A (2016) Amelioration of salinity stress in different basil (Ocimum basilicum L.) varieties by vesicular-arbuscular mycorrhizal fungi. Acta Agric Scand B-S P 66(7):583–592

    CAS  Google Scholar 

  • Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A (2008) A korarchaeal genome reveals new insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105:8102–8107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JU (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals. J Ecol 99(6):1500–1507

    Article  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrando L, Fernández Scavino A (2015) Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 91(9):fiv104

    Article  PubMed  CAS  Google Scholar 

  • Forreiter C, Nover L (1998) Heat induced stress proteins and the concept of molecular chaperones. J Biosci 23(4):287–302

    Article  CAS  Google Scholar 

  • Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3(4):395–398

    Article  CAS  Google Scholar 

  • Gagné-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One 10(6):e0130456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21(11):937–950

    Article  CAS  PubMed  Google Scholar 

  • Glassner H, Zchori-Fein E, Compant S, Sessitsch A, Katzir N, Portnoy V, Yaron S (2015) Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.). FEMS Microbiol Ecol 91(7):fiv074

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbio 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Annapurna K (2015) Effect of mustard rhizobacteria on wheat growth promotion under cadmium stress: characterization of acdS gene coding ACC deaminase. Ann Microbiol 65(3):1679–1687

    Article  CAS  Google Scholar 

  • Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57(4):312–317

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 333–364

    Chapter  Google Scholar 

  • Govindasamy V, Franco CM, Gupta VV (2014) Endophytic actinobacteria: diversity and ecology. In: Advances in endophytic research. Springer, New Delhi, pp 27–59

    Chapter  Google Scholar 

  • Govindasamy V, Raina SK, George P, Kumar M, Rane J, Minhas PS, Vittal KP (2017) Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum [Sorghum bicolor (L.) Moench]. Antonie van Leeuwenhoekr 28:1–9

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37(3):395–412

    Article  CAS  Google Scholar 

  • Guy L, Ettema TJ (2011) The archaeal ‘TACK’superphylum and the origin of eukaryotes. Trends Microbiol 19(12):580–587

    Article  CAS  PubMed  Google Scholar 

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    Article  CAS  Google Scholar 

  • Haase S, Philippot L, Neumann G, Marhan S, Kandeler E (2008) Local response of bacterial densities and enzyme activities toelevated atmospheric CO2 and different N supply in therhizosphere of Phaseolus vulgaris L. Soil Biol Biochem 40:1225–1234

    Article  CAS  Google Scholar 

  • Hagerty SB, Van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Chang 4(10):903–906

    Article  CAS  Google Scholar 

  • Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, Lee IJ (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10(1):117–125

    Article  CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean–RhizobiumGlomus associations. New Phytol 101(3):427–440

    Article  CAS  PubMed  Google Scholar 

  • He Y, Yang Z, Li M, Jiang M, Zhan F, Zu Y, Li T, Zhao Z (2017) Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. Environ Sci Pollut Res 24:18494–18504

    Article  CAS  Google Scholar 

  • Hibbett DS et al (2007) A higher level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hosseini F, Mosaddeghi MR, Dexter AR (2017) Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiol Biochem 118:107–120

    Article  CAS  PubMed  Google Scholar 

  • Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90(2):137–149

    Article  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417(6884):63–67

    Article  CAS  PubMed  Google Scholar 

  • Imazaki I, Kadota I (2015) Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiol Ecol 91(9):fiv098

    Article  PubMed  CAS  Google Scholar 

  • Isobe K, Koba K, Otsuka S, Senoo K (2011) Nitrification and nitrifying microbial communities in forest soils. J For Res 16(5):351

    Article  CAS  Google Scholar 

  • Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3(2):71–77

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135(4):575–585

    Article  Google Scholar 

  • Jumpponen ARI, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  PubMed  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes – are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Kaisermann A, Maron PA, Beaumelle L, Lata JC (2015) Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol l86:158–164

    Article  Google Scholar 

  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2006) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem 38:2448–2460

    Article  CAS  Google Scholar 

  • Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71(3):337–344

    Google Scholar 

  • Karhu K, Auffret MD, Dungait JA, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Ågren GI, Sebastia MT, Gouriveau F (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513(7516):81–84

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T, Amano N, Koike H, Makino SI, Higuchi S, Kawashima-Ohya Y et al (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci 97(26):14257–14262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy AC (1998) The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, pp 389–407

    Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Koda N, Asaeda T, Yamade K, Kawahara H, Obata H (2001) A novel cryoprotective protein (CRP) with high activity from the ice-nucleating bacterium, Pantoeaagglomerans IFO12686. Biosci Biotechnol Biochem 65(4):888–894

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Deng Z, Glick BR, Wei G, Chou M (2017) A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Ann Microbiol 67(1):49–58

    Article  CAS  Google Scholar 

  • Lacercat-Didier L, Berthelot C, Foulon J, Errard A, Martino E, Chalot M, Blaudez D (2016) New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance. Mycorrhiza 26(7):657–671

    Article  CAS  PubMed  Google Scholar 

  • Latef AA, Hashem A, Rasool S, Abd_Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA, Ahmad P (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol 59(5):407–426

    Article  CAS  Google Scholar 

  • Li L, Li L, Wang X, Zhu P, Wu H, Qi S (2017) Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiol Biochem 119:211–223

    Article  CAS  PubMed  Google Scholar 

  • Li X, Geng X, Xie R, Fu L, Jiang J, Gao L, Sun J (2016) The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnol Biofuels 9(1):190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linderman RG (1992) Vesicular–arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication, Madison, pp 45–70

    Google Scholar 

  • Liu J, Guo C, Chen ZL, He JD, Zou YN (2016) Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emir J Food Agric 28(4):251–256

    Article  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3(7):e2702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92(12):fiw194

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, Chichester, pp 1–10

    Google Scholar 

  • Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104(5):759–768

    Article  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H (2017) Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185:75–85

    Article  CAS  PubMed  Google Scholar 

  • Maček I, Dumbrell AJ, Nelson M et al (2011) Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO2springs. Appl Environ Microbiol 77:4770–4777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40(4):923–940

    Article  CAS  Google Scholar 

  • Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water-stress: results from a meta-analysis. Ecology 93:930–938

    Article  PubMed  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479–e48493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315(5135):513–515

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Ulrich Hartl F (1997) Chaperone-assisted protein folding. Curr Opin Struct Biol 7(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Gazis R, Skaltsas D, Chaverri P, Hibbett D (2015) Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia 107(2):284–297

    Article  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Millar NS, Bennett AE (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182(3):625–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina-Montenegro MA, Oses R, Torres-Díaz C, Atala C, Zurita-Silva A, Ruiz-Lara S (2016) Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition. AoB Plants 8:plw062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Münchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181(1):83–90

    PubMed  PubMed Central  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655–670

    Article  Google Scholar 

  • Navarro-Torre S, Barcia-Piedras JM, Mateos-Naranjo E, Redondo-Gómez S, Camacho M, Caviedes MA, Pajuelo E, ID R-L (2017) Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol 9(2):249–256

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190(3):783–793

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira MN, Santos TM, Vale HM, Delvaux JC, Cordero AP, Ferreira AB, Miguel PS, Tótola MR, Costa MD, Moraes CA, Borges AC (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 59(4):221–230

    Article  CAS  PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity in the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  PubMed  Google Scholar 

  • Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R, Hause B, Ruiz-Lozano JM (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26(2):141–152

    Article  CAS  PubMed  Google Scholar 

  • Pereira SI, Monteiro C, Vega AL, Castro PM (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97

    Article  Google Scholar 

  • Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, De Cunzo F, Michelozzi M, Lambardi M, Fotopoulos V (2017) Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 9:1–3

    Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Feng WW, Wang TT, Ding P, Xing K, Jiang JH (2017) Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant Soil 416:117–132

    Article  CAS  Google Scholar 

  • Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM (2017) Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci 8:1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Lee KJ, Lee WH, Banu JR (2005) Growth of Brassica juncea under chromium stress: influence of siderophores and indole 3 acetic acid producing rhizosphere bacteria. J Environ Biol 26:693–699

    CAS  PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823–e14823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581

    Article  CAS  PubMed  Google Scholar 

  • Repas TS, Gillis DM, Boubakir Z, Bao X, Samuels GJ, Kaminskyj SG (2017) Growing plants on oily, nutrient-poor soil using a native symbiotic fungus. PLoS One 12(10):e0186704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2005) Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: unraveling the complexities of intimacy. In: Dighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem. Taylor & Francis/CRC Press, Boca Raton, pp 683–696

    Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strat Gl 9:261–272

    Article  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:40416

    Article  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman AR (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Roger A, Colard A, Angelard C, Sanders IR (2013) Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J 7(11):2137–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351(2):187–194

    Article  CAS  PubMed  Google Scholar 

  • Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2017) Plant Aquaporins and Mycorrhizae: their regulation and involvement in plant physiology and performance. In: Chaumont F, Tyerman S (eds) Plant Aquaporins. Springer, Cham, pp 333–353

    Chapter  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452

    Article  CAS  PubMed  Google Scholar 

  • Ryffel F, Helfrich EJ, Kiefer P, Peyriga L, Portais JC, Piel J, Vorholt JA (2016) Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10(3):632–643

    Article  CAS  PubMed  Google Scholar 

  • Salles JF, Le Roux X, Poly F (2012) Relating phylogenetic and functional diversity among denitrifiers and quantifying their capacity to predict community functioning. Front Microbiol 3:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhya V, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soil 46(1):17–26

    Article  CAS  Google Scholar 

  • Santos SG, Silva PR, Garcia AC, Zilli JE, Berbara RL (2017) Dark septate endophyte decreases stress on rice plants. Braz J Microbiol 48(2):333–341

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoeadispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24(7):955–960

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46(2):171–175

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Reiter B, Berg B (2004) Endophytic bacterial communities of field grown potato plants and their plant growth promoting and antagonistic abilities. Can J Microbiol 50:239–349

    Article  CAS  PubMed  Google Scholar 

  • Shearin ZR, Filipek M, Desai R, Bickford WA, Kowalski KP, Clay K (2018) Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 422(1–2):183–194

    Article  CAS  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2009) The root-colonizing endophyte pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves. Mol Plant-Microbe Interact 21:799–807

    Article  CAS  Google Scholar 

  • Singhal U, Attri MK, Varma A (2017) Mass cultivation of mycorrhiza-like fungus Piriformospora indica (Serendipita indica) by batch in bioreactor. In: Mycorrhiza-function, diversity, state of the art 2017. Springer, Cham, pp 365–384

    Chapter  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, New York/London/Burlington/San Diego

    Google Scholar 

  • Stajner D, Kevreaan S, Gasaic O, Mimica-Dudic N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445

    Article  CAS  Google Scholar 

  • Streitwolf-Engel R, Van der Heijden MG, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82(10):2846–2859

    Article  Google Scholar 

  • Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3(1):65–76

    Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wroblewski H, Blanco C, Bernard T (1994) Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J Bacteriol 176(17):5210–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanapichatsakul C, Monggoot S, Gentekaki E, Pripdeevech P (2017) Antibacterial and antioxidant metabolites of Diaporthe spp. isolated from flowers of Melodorum fruticosum. Curr Microbiol 20:1–8

    Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA et al (2002) Novel plant-microbe rhizosphere interaction involving Streptomyceslydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68(5):2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164(2):347–355

    Article  PubMed  Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90(5):896–903. https://doi.org/10.2307/3761331

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M et al (2005) The endophytic fungus Piriformospora indicareprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JL, Li T, Liu GY, Smith JM, Zhao ZW (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180(4):911–921

    Article  PubMed  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    CAS  PubMed  Google Scholar 

  • Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J 63(3):575–584

    Article  CAS  Google Scholar 

  • Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541(7637):353–358

    Article  CAS  PubMed  Google Scholar 

  • Zeiller M, Rothballer M, Iwobi AN, Böhnel H, Gessler F, Hartmann A, Schmid M (2015) Systemic colonization of clover (Trifolium repens) by Clostridium botulinum strain 2301. Front Microbiol 6:1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S (2015) A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11(6):e1005280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q, Gong M, Yuan J, Hou Y, Zhang H, Wang Y, Hou X (2017) Dark septate endophyte improves drought tolerance in sorghum. Int J Agric Biol 19(1):53–60

    Article  Google Scholar 

  • Zhao S, Zhou N, Zhao ZY, Zhang K, Wu GH, Tian CY (2016) Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr Microbiol 73(4):574–581

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Song F, Liu S, Liu F (2016) Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 26(2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Govindasamy, V., George, P., Raina, S.K., Kumar, M., Rane, J., Annapurna, K. (2018). Plant-Associated Microbial Interactions in the Soil Environment: Role of Endophytes in Imparting Abiotic Stress Tolerance to Crops. In: Bal, S., Mukherjee, J., Choudhury, B., Dhawan, A. (eds) Advances in Crop Environment Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-13-1861-0_10

Download citation

Publish with us

Policies and ethics