Skip to main content

Recent Advances in the Statistical Analysis of Retrospective Time-to-Event Data

  • Chapter
  • First Online:

Abstract

In a cross-sectional observational study on time-to-event, the probability distribution of that time is often estimated from data on current status. Recall data on the time of occurrence of the landmark event can provide more information in this regard. Even so, the subjects may not be able to recall the time precisely. This type of incompleteness is a peculiarity of recall data, which poses a challenge to analysis. Valid likelihood-based procedures for inference have emerged in a number of papers published only recently. In this article, we review these papers and show how one can estimate the time-to-event distribution parametrically or nonparametrically, and also assess the effect of covariates, by using current status data or incompletely recalled data. The methods are illustrated through the analysis of menarcheal data from a recent anthropometric study of adolescent and young adult females in Kolkata, India.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aksglaede, L., Sorensen, K., Petersen, J. H., Skakkebak, N. E., & Juul, A. (2009). Recent decline in age at breast development: The Copenhagen puberty study. Pediatrics, 123, 932–939.

    Article  Google Scholar 

  • Allison, P. D. (1982). Discrete-time methods for the analysis of event histories. Sociological Methodology, 13, 61–98.

    Article  Google Scholar 

  • Aryeetey, R., Ashinyo, A., & Adjuik, M. (2011). Age at menarche among basic level school girls in Medina, Accra. African Journal of Reproductive Health, 103, 103–110.

    Google Scholar 

  • Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., & Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. Annals of Mathematical Statistics, 26, 647–647.

    Article  MathSciNet  Google Scholar 

  • Beckett, M., DaVanzo, J., Sastry, N., Panis, C., & Peterson, C. (2001). The quality of retrospective data: An examination of long-term recall in a developing country. Journal of Human Resources, 36, 593–625.

    Article  Google Scholar 

  • Bergsten-Brucefors, A. (1976). A note on the accuracy of recalled age at menarche. Annals of Human Biology, 3, 71–73.

    Article  Google Scholar 

  • Cameron, N. (2002). Human growth and development. Academic Press.

    Google Scholar 

  • Chumlea, W. C., Schubert, C. M., Roche, A. F., Kulin, H. E., Lee, P. A., Himes, J. H., et al. (2003). Age at menarche and racial comparisons in us girls. Pediatrics, 11, 110–113.

    Article  Google Scholar 

  • Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, Series B, 34, 187–220.

    Google Scholar 

  • Dabrowska, D. M., & Doksum, K. A. (1988). Estimation and testing in a two-sample generalized odds-rate model. Journal of the American Statistical Association, 83, 744–749.

    Article  MathSciNet  Google Scholar 

  • Dasgupta, P. (2015). Physical growth, body composition and nutritional status of Bengali school aged children, adolescents and young adults of Calcutta, India: Effects of socioeconomic factors on secular trends. (in collaboration with M. Nubé, D. Sengupta & M. de Onis). http://www.neys-vanhoogstraten.nl/wp-content/uploads/2015/06/Academic-Report-ID-158.pdf

  • Demirjian, A., Goldstien, H., & Tanner, J. M. (1973). A new system of dental age assessment. Annals of Human Biology, 45, 211–227.

    Google Scholar 

  • Eveleth, P. B., & Tanner, J. M. (1990). Worldwide variation in human growth (2nd ed.). Cambridge University Press.

    Google Scholar 

  • Finkelstien, D. M., Goggines, W. B., & Schoenfeld, D. A. (2002). Analysis of failure time data with dependent interval censoring. Biometrics, 58, 298–304.

    Article  MathSciNet  Google Scholar 

  • Gentleman, R., & Geyer, C. J. (1994). Maximum likelihood for interval censored data: Consistency and computation. Biometrika, 81, 618–623.

    Article  MathSciNet  Google Scholar 

  • Hediger, M. L., & Stine, R. A. (1987). Age at menarche based on recall data. Annals of Human Biology, 14, 133–142.

    Article  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (1999). Applied survival analysis: Regression modeling of time to event data. John Wiley.

    Google Scholar 

  • Hosmer, D. W., Lemeshow, S., & May, S. (2008). Applied survival analysis (2nd ed.). Hoboken: John Wiley.

    Book  Google Scholar 

  • Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring. Annals of Statistics, 24, 540–568.

    Article  MathSciNet  Google Scholar 

  • Huang, J., & Wellner, J. (1997). Interval censored survival data: A review of recent progress. In Proceedings of the First Seattle Symposium in Biostatistics.

    Chapter  Google Scholar 

  • Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data. New York: John Wiley.

    Book  Google Scholar 

  • Keiding, N., Begtrup, K., Scheike, T. H., & Hasibeder, G. (1996). Estimation from current status data in continuous time. Lifetime Data Analalysis, 2, 119–129.

    Article  Google Scholar 

  • Khan, A. D., & Schroeder, D. G., Reynaldo, M., Haas, J. D., & Rivera, J. (1996). Early childhood determinants of age at menarche in rural Guatemala. American Journal of Human Biology, 8, 717–723.

    Article  Google Scholar 

  • Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Korn, E. L., Graubard, B. I., & Midthune, D. (1997). Time-to-event analysis of longitudinal follow-up of a survey: Choice of the time-scale. American Journal of Epidemiology, 145, 72–80.

    Article  Google Scholar 

  • Lawless, J. F. (2003). Statistical models and methods for lifetime data (2nd ed.). New York: John Wiley.

    MATH  Google Scholar 

  • LeClere, M. J. (2005). Modeling time to event: Applications of survival analysis in accounting, economics and finance. Review of Accounting and Finance, 4, 5–12.

    Article  Google Scholar 

  • Lee, E. T., & Wang, J. W. (2003). Statistical methods for survival data analysis. John Wiley.

    Google Scholar 

  • McKay, H. A., Bailey, D. B., Mirwald, R. L., Davison, K. S., & Faulkner, R. A. (1998). Peak bone mineral accrual and age at menarche in adolescent girls: A 6-year longitudinal study. Journal of Pediatrics, 13, 682–687.

    Article  Google Scholar 

  • Mirzaei, Salehabadi S., & Sengupta, D. (2015). Regression under Coxs model for recall-based time-to-event data in observational studies. Computational Statistics & Data Analysis, 92, 134–147.

    Article  MathSciNet  Google Scholar 

  • Mirzaei, Salehabadi S., & Sengupta, D. (2016). Nonparametric estimation of time-to-event distribution based on recall data in observational studies. Lifetime Data Analysis, 22, 473–503.

    Article  MathSciNet  Google Scholar 

  • Mirzaei, Salehabadi S., Sengupta, D., & Das, R. (2014). Parametric estimation of menarcheal age distribution based on recall data. Scandinavian Journal of Statistics, 42, 290–305.

    MathSciNet  MATH  Google Scholar 

  • Mirzaei, S. S., Sengupta, D., & Ghosal, R. (2016). Estimation of menarcheal age distribution from imperfectly recalled data. Applied Statistical Unit, Technical Report No. ASU/2016/4, Indian Statistical Institute. http://www.isical.ac.in/asu/TR/TechRepASU201604.pdf

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization. New York: Springer.

    MATH  Google Scholar 

  • Padez, C. (2003). Age at menarche of schoolgirls in Maputo, Mozambique. Annals of Human Biology, 30, 487–495.

    Article  Google Scholar 

  • Rabe-Hesketh, S., Yang, S., & Pickles, A. (2001). Multilevel models for censored and latent responses. Statistical Methods in Medical Research, 10, 409–427.

    Article  Google Scholar 

  • Roberts, D. F. (1994). Secular trends in growth and maturation in British girls. American Journal of Human Biology, 6, 13–18.

    Article  Google Scholar 

  • Salsberry, P. J., Reagan, P. B., & Pajer, K. (2009). Growth differences by age of menarche in African American and white girls. Nursing Research, 58, 382–390.

    Article  Google Scholar 

  • Scharfstein, D., & Robins, J. M. (2002). Estimation of the failure time distribution in the presence of informative censoring. Biometrika, 89, 617–634.

    Article  MathSciNet  Google Scholar 

  • Shiboski, S. C., & Jewell, N. P. (1992). Statistical analysis of the time dependence of HIV infectivity based on partner study data. Journal of the American Statistical Association, 87, 360–372.

    Article  Google Scholar 

  • Sun, J., & Kalbfleisch, J. D. (1993). The analysis of current status data on point processes. Journal of the American Statistical Association, 88, 1449–1454.

    Article  MathSciNet  Google Scholar 

  • Sun, J. (2006). The statistical analysis of interval-censored failure time data. New York: Springer.

    MATH  Google Scholar 

  • Teilmann, G., Petersen, J. H., Gormsen, M., Damgaard, K., Skakkebaek, N. E., & Jensen, T. K. (2009). Early puberty in internationally adopted girls: Hormonal and clinical markers of puberty in 276 girls examined biannually over two years. Hormone Research Paediatrics, 72, 236–246.

    Article  Google Scholar 

  • Turnbull, Bruce W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B, 38, 290–295.

    MathSciNet  MATH  Google Scholar 

  • Vizmanos, B., Marti-Henneberg, C., Clivillé, R., Moreno, A., & Fernández-Ballart, J. (2001). Age of pubertal onset affects the intensity and duration of pubertal growth peak but not final height. American Journal of Human Biology, 13, 409–416.

    Article  Google Scholar 

  • Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the cox regression model in survival analysis (with discussion). Statistics in Medicine, 11, 1871–1879.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially sponsored by the project ‘Physical growth, body composition and nutritional status of the Bengal school aged children, adolescents, and young adults of Calcutta, India: Effects of socioeconomic factors on secular trends,’ funded by the Neys-Van Hoogstraten Foundation of the Netherlands. The authors thank Professor Parasmani Dasgupta, leader of the project, for making the data available for this research. Also, the first author thanks Dr. Bibhas Chakrobarty for his financial support through the Duke-NUS start-up grant R-913-200-074-263, the NIH grant 1 R01 DE023072-01 and the Singapore Ministry of Education grant MOE2015-T2-2-056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salehabadi, S.M., Sengupta, D. (2018). Recent Advances in the Statistical Analysis of Retrospective Time-to-Event Data. In: Dasgupta, R. (eds) Advances in Growth Curve and Structural Equation Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-13-1843-6_9

Download citation

Publish with us

Policies and ethics