Hydrocarbon Degradation

  • Samina Siddiqui
  • Asghari Bano


Bioremediation involved the use of microbes to degrade petroleum hydrocarbons. Quite a number of microbial genera isolated from extreme environment mainly from petroleum-contaminated soils (mesophilic microbes), deep subsurface reservoirs (thermophilic microbes), and sediment under the permafrost (psychrophilic microbes) once inoculated may enhance the degradation/removal of petroleum in extreme environment in field. Limitation in bioremediation at field scale was that the bioavailability and biodegradation of some recalcitrant poly-aromatic hydrocarbons were not enhanced with mixed genera of microbes. Thus further improvement in bioremediation was made when biosurfactant- and bioemulsifier-producing microbial strain such as alasan, strain F2-7, strain TU was inoculated to petroleum-contaminated soils. Considerable increase in the bioavailability and biodegradability of poly-aromatic hydrocarbons was recorded. However the mode of transport and mechanism of intercellular or extracellular microbial degradation of hydrocarbons remained debatable. Similarly biosurfactants and bioemulsifier are expensive, thus limiting their use commercially. Recent advances in the use of nanoparticle to enhance the surface area and bioavailability of hydrocarbons to microbes are under experimentation. Further detail study is required to understand the response of microbes to nanoparticle and then the mode of adaptation and mechanism of degradation adopted by microbes. Appropriate maintenance of microbial population and soil conditions required for effective degradation of hydrocarbons in the field also need further investigation. To avoid this problem, plants are used with microbes and promising results have been recorded in the field. Bioremediation is successful in remediating the surface soil; however, subsurface soil or saturated zone remained unreclaimed with this technique. Thus there is need to develop such bioremediation technique that can degrade hydrocarbon from saturated subsurface zone of the soil.


  1. Abdel-Moghny TH, Mohamed RSA, El-Sayed E, Mohammad Aly S, Snousy MG (2012) Effect of soil texture on remediation of hydrocarbons-contaminated soil at El-Minia District, Upper Egypt. Appl Petrochem Res 2(1–2):51–59CrossRefGoogle Scholar
  2. Adenipekun CO (2008) Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium Singer, a Nigerian white-rot fungus. African J Biotechnol 7(1):055–058Google Scholar
  3. Agamuthu YS, Tan SH, Fauziah (2013) Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environ Sci 18:694–702CrossRefGoogle Scholar
  4. Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon contaminated polar soils. Extremophiles 10(3):171–179CrossRefGoogle Scholar
  5. Akbari A, Ghoshal S (2014) Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site. Hazard Mater 15:595–602CrossRefGoogle Scholar
  6. Alexander M (1965) Nitrification. In: Bartholomew WV, Clark FE (eds) Soil Nitrogen (Agronomy 10). American Society of Agronomy, Madison, pp 307–343Google Scholar
  7. Alexander AP (2012) Petroleum hydrocarbons. Springer, Berlin/HeidelbergGoogle Scholar
  8. Al-Hawash AB, Li S, Zhang X, Zhang X, Ma F (2018) Productivity of γ-Linoleic acid by oleaginous fungus Cunninghamella echinulata using a pulsed high magnetic field. Food BioSci 21:1–7CrossRefGoogle Scholar
  9. Alrumman SA, Standing DB, Paton GI (2015) Effects of hydrocarbon contamination on soil microbial community and enzyme activity. J King Saud Uni Sci 27(1):31–41CrossRefGoogle Scholar
  10. Anastasi A, Giovanna CV, Francesca B, Fabiana CV, Marchisio F (2008) Bioremediation potential of basidiomycetes isolated from compost. Bioresource Tech 99(14):6626–6630CrossRefGoogle Scholar
  11. Anwar Y, El-Hanafy AA, Sabir JSM, Al-Garni SMS, Al-Ghamdi K, Almehdar H, Waqas M (2017) Characterization of mesophilic bacteria degrading crude oil from different sites of Aramco, Saudi Arabia. Polycyclic Aromat Compd.
  12. Ashok T, Saxena S, Musarrat J (1995) Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery. Lett Appl Microbiol 21:246–248. CrossRefPubMedGoogle Scholar
  13. Atlas RM (1985) Effects of hydrocarbons on micro-organisms and biodegradation in Arctic ecosystems. In: Engelhardt FR (ed) Petroleum effects in the Arctic environment. Elsevier, London, pp 63–99Google Scholar
  14. Atlas RM, Bartha R (1978) Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng 186(1):121–127Google Scholar
  15. Azubilke CC, Chioma BC, Gideon CO (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotech 32:180CrossRefGoogle Scholar
  16. Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca RatonGoogle Scholar
  17. Barin R, Talebi M, Biria D, Beheshti M (2014) Fast bioremediation of petroleum-contaminated soils by a consortium of biosurfactant/bioemulsifier producing bacteria. Int J Environ Sci Technol 11:1701–1710CrossRefGoogle Scholar
  18. Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65(6):2697–2702PubMedPubMedCentralGoogle Scholar
  19. Bartha R (1986) Biotechnology of petroleum pollutant biodegradation. Microbial Ecol 12(1):155–172CrossRefGoogle Scholar
  20. Bej AK, Saul D, Aislabie J (2000) Cole tolerant alkane degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105CrossRefGoogle Scholar
  21. Bell TH, Callender KL, Lyle GW, Greer CW (2013) Microbial competition in polar soils: a review of an understudied but potentially important control on productivity. Biology 2(2):533–554PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bossert I, Wayne MK, Bartha R (1984) Fate of hydrocarbons during oily sludge disposal in soil. Appl Environ Microbiol 47(4):763–767PubMedPubMedCentralGoogle Scholar
  23. Braddock JF, Ruth ML, Catterall PH (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31(7):2078–2084CrossRefGoogle Scholar
  24. Bustamante M, Durán N, Diez MC (2012) Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Soil Sci Plant Nutrition 12(4):667–687Google Scholar
  25. Camenzuli D, Freidman BL (2015) On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Pol Res 34:24492 doi: 10.3402CrossRefGoogle Scholar
  26. Caravaca F, Roldán A (2003) Assessing changes in physical and biological properties in a soil contaminated by oil sludges under semiarid Mediterranean conditions. Soil Tillage Res 72(1):65–73CrossRefGoogle Scholar
  27. Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2016) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeterior Biodegrad 119:419–428. CrossRefGoogle Scholar
  28. Cerniglia CE, Gibson DT, Van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. Microbiology 116(2):495–500CrossRefGoogle Scholar
  29. Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56(3):448–459PubMedCrossRefGoogle Scholar
  30. Cripps RE, Watkinson RJ (1978) Polycyclic aromatic hydrocarbons: metabolism and environmental aspects. In: Watkinson JR (ed) Developments in Biodegradation of Hydrocarbons. Applied Science Publishers, London, pp 113–134Google Scholar
  31. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13 941810Google Scholar
  32. Das D, Baruah B, Sarma A, Anil R, Singh K, Deka P, Kalita BJ, Bora CT (2015) Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics 105(3):182–190PubMedCrossRefPubMedCentralGoogle Scholar
  33. Day AD, Ludeke KL (1993) Soil Alkalinity. In: Plant nutrients in Desert environments. Adaptations of Desert organisms. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  34. de Voogt P (ed) (2016) Reviews of environmental contamination and toxicology, vol 237. Springer International Publishing, ChamGoogle Scholar
  35. Delille D, Pelletier E, Delille B, Coulon F (2003) Effect of nutrient enrichments on the bacterial assemblage of Antarctic soils contaminated by diesel or crude oil. Polar Rec 39(208):1–10Google Scholar
  36. Diaz E, Ignacio iménez J, Nogales J (2013) Aerobic degradation of aromatic compounds. Curr Opinion Biotech 24(3):431–442CrossRefGoogle Scholar
  37. Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37(4):729–739PubMedPubMedCentralGoogle Scholar
  38. Dix NJ, Webster J (1995) Fungal ecology. Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, LondonGoogle Scholar
  39. Drew JV, Tedrow JCF (1962) Arctic soil classification and patterned ground. Arctic 15:109–116CrossRefGoogle Scholar
  40. Elumalai P, Parthipan P, Karthikeyan OP, Rajasekar A (2017) Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. Biotech 7(2):116–121Google Scholar
  41. Eriksson M, Ka JO, Mohn WM (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic Tundra Soil. Appl Environ Microbiol 67(11):15107–15112CrossRefGoogle Scholar
  42. European Environmental Protection Agency Report (2000) Annual Report.Google Scholar
  43. Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. Microbiol Open 6:e00394 CrossRefGoogle Scholar
  44. Ferrera-Rodríguez O, Greer CW, Juck D, Consaul LL, Martínez-Romero E, Whyte LG (2013) Hydrocarbon-degrading potential of microbial communities from Arctic plants. Appl Microbiol 114(1):71–83CrossRefGoogle Scholar
  45. Filler DM, Snape I, Narnes DL (eds) (2008) Bioremediation of petroleum hydrocarbons in cold regions, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  46. Foster EM (1962) Low temperature Microbiology. Campbell Soup Co, Camden, p 313Google Scholar
  47. Fuchs G, Boll M, Heider J (2001) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9(11):803–816CrossRefGoogle Scholar
  48. Galdamas A, Mendoza A, Orueta M, Garcia IS, Sanchez M, Virto I, Vilas JL (2017) Development of new remediation technologies for contaminated soils based on the application of zero valent nanoparticles and bioremediation with compost. Res Efficient Tech 3(2). CrossRefGoogle Scholar
  49. Ganzert L, Bajerski F, Wagner D (2014) Bacterial community composition and diversity of fi ve different permafrost-affected soils of Northeast Greenland. FEMS Microbiol Ecol 89:426–441PubMedCrossRefGoogle Scholar
  50. Gao Z, Bian Y, Hu L, Fan WJ (2007) Determination of soil temperature in an arid region. Arid Environ 71(2):157–168CrossRefGoogle Scholar
  51. Ghoreish G, Alemzadeh A, Mojarrad M, Dajavaheri M (2017) Bioremediation capability and characterization of bacteria isolated from petroleum contaminated soils in Iran. Sustain Environ Res 27(4):195–202CrossRefGoogle Scholar
  52. Ghoshal A, Shankar R, Bagchi S, Grama A, Chaterji A (2016) Erratum to: ‘MicroRNA target prediction using thermodynamic and sequence curves’. BMC Genomics 17:216PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gibson DT, Koch JR, Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemist 7(7):2653–2662CrossRefGoogle Scholar
  54. Goltapeh EM, Danesh RY, Varma A (eds) (2013) Fungi as Bioremediators. Soil Biology, vol 32. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  55. Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology. Int Biodeterior Biodegrad 89:103–109. CrossRefGoogle Scholar
  56. Graj W, Piotr L, Szulc A, Lukasz C, Joanna WK (2013) Bioaugmentation with petroleum-degrading consortia has a selective growth-promoting impact on crop plants germinated in diesel oil-contaminated soil. Water Air Soil Pollut 224(9):1676PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gran-Scheuch A, Fuentes E, Bravo DM, Juan C, Pérez-Donoso JM (2017) Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils. Front Microbiol 8:1634PubMedPubMedCentralCrossRefGoogle Scholar
  58. Greer CW, Juck D (2017) Chapter 28: Bioremediation of petroleum hydrocarbon spills in cold terrestrial environments. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin/Heidleberg, pp 645–660CrossRefGoogle Scholar
  59. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67(2):225–243PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hazen TC, Tien AJ, Worsztynowicz A, Altman DJ, Ulfig K, Manko T (2003) Biopiles for remediation of petroleum-contaminated soils: a polish case study. In: Šašek V, Glaser JA, Baveye P (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions, NATO Science Series (Series IV: Earth and Environmental Sciences), vol 19. Springer, DordrechtGoogle Scholar
  61. Hu D, Li C, Dong QQ, Li LM, Li GH (2014) Compositions and residual properties of petroleum hydrocarbon in contaminated soil of the oilfields. Huan Jing Ke Xue 35(1):227–232PubMedGoogle Scholar
  62. Ismail W, Alhamad NA, El-Sayed WS, El Nayal AM, Chiang YR, Hamzah RY (2013) Bacterial degradation of the saturate fraction of Arabian light crude oil: biosurfactant production and the effect of ZnO nanoparticles. J Pet Environ Biotechnol 4(6):125–131Google Scholar
  63. Jiao F, Shi XR, Han FP, Yuan ZY (2016) Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci Rep 6:19601PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jurelevicius D, Alvarez VM, Peixoto R, Rosado AS, Seldin L (2013) The use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PLoS One 8(6):e66565PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kothari A, Marimikel C, Yu-Wei W, Stephanie M, Carol EZ, Steven WS, Larry D, Aindrila M (2016a) Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization. FEMS Microbiol Lett 363(20):224–232CrossRefGoogle Scholar
  66. Kothari A, Charrier M, Wu YW, Malfatti S, Zhou CE, Singer SW, Dugan L, Mukhopadhyay L (2016b) Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization. FEMS Microbiol Lett 363(20):157–168CrossRefGoogle Scholar
  67. Krogh SA, Pomeroy JW, Philip M (2017) Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model. J Hydro 550:685–703CrossRefGoogle Scholar
  68. Kumari B, Singh DP (2016) A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol Eng 97:98–105CrossRefGoogle Scholar
  69. Ladino-Orjuela G, Gomes E, da Silva R, Salt C, Parsons JR (2016) Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. rev environ con toxicol 237:105–121Google Scholar
  70. Lal R (2004) Soil carbon sequestration impacts on global change and food security. Science 304:1623–1627PubMedCrossRefGoogle Scholar
  71. Lal R (2009) Sequestering carbon in soils of arid ecosystems. Land degrade develop 20(4):441–454CrossRefGoogle Scholar
  72. Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG (2015) Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ Res Lett 10(9):1–11CrossRefGoogle Scholar
  73. Liang JL, JiangYang JH, Nie Y, Wu LX (2016) Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp Strain DQ12-45-1b. Appl Environ Microbiol 82(2):608–619PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lin X, Yang B, Shen J, Du N (2009) Biodegradation of Crude Oil by an Arctic Psychrotrophic Bacterium Pseudoalteromomas sp. P29. Curr Microbiol 59:341–345PubMedCrossRefPubMedCentralGoogle Scholar
  75. Liu PWG, Chang TC, Chen C-H, Wang MZ, Wei Hsu H (2013) Effects of soil organic matter and bacterial community shift on bioremediation of diesel-contaminated soil. Int Biodeter Biodegr 85:661–670CrossRefGoogle Scholar
  76. Liu Q, Tang J, Gao K, Gurav R, Giesy JP (2017) Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci Rep 7:14856. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng 115(4):796–814PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ma Liu W, Luo Y, Teng Y, Li Z, Ma LQ (2010) Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32:23–29. CrossRefGoogle Scholar
  79. Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8(3):455–465PubMedCrossRefPubMedCentralGoogle Scholar
  80. Malakahmad A, Nuramalina J (2013) Oil sludge contaminated soil bioremediation via composting using refinery treatment plant sludge and different bulking agents. IEEE, Business Engineering and Industrial Applications Colloquium. Malaysia, pp. 832–835, April 2013.
  81. Mandal AK, Sarma PM, Jeyaseelan CP, Channashettar VA, Singh B, Lal B, Datta J (2012) Large scale bioremediation of petroleum hydrocarbon contaminated waste Indian oil refineries: case studies. Int J life Sci Phorma Res 2(4):114–128Google Scholar
  82. Mandal AK, Sarma PM, Jeyaseelan CP, Channashettar VA, Singh B, Agnihotri A, Lal B, Datta J (2014) Monitoring ground water quality and heavy metals in soil during large-scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies. Environ Res Eng Manag 2(68):41–52Google Scholar
  83. Mao J, Luo Y, Teng Y, Zhengao L (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeter Biodegr 70:141–147CrossRefGoogle Scholar
  84. Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M (2017) Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeter Biodegr 116:48–57CrossRefGoogle Scholar
  85. Margesin R (2009) Permafrost soils. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  86. Margesin R, Schinner F (1997) Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol Ecol 24(3):243–249CrossRefGoogle Scholar
  87. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003a) Characterization of hydrocarbon degrading microbial population on contaminated and pristine Alpine soils. Appl Environ Microbiol 69:3085–3092PubMedPubMedCentralCrossRefGoogle Scholar
  88. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003b) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69(6):3085–3092PubMedPubMedCentralCrossRefGoogle Scholar
  89. Margesin R, Schinner F, Marx JC, Gerday C (eds) (2008) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin/HeidelbergGoogle Scholar
  90. Marin JA, Hernandez T, Garcia C (2005) Bioremediation of oil refinery sludge by land farming in semiarid conditions: influence on soil microbial activity. Environ Res 98(2):185–195PubMedCrossRefGoogle Scholar
  91. Martínez Álvarez LM, Ruberto L, Lo Balbo A, Mac Cormack WP (2017). Bioremediation of hydrocarbon-contaminated soils in cold regions: development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Sci Total Environ 590–591:194–203PubMedCrossRefPubMedCentralGoogle Scholar
  92. Maslov MN, Makarov MI (2016) Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia. Eurasian Soil Sci 49(7):757–764CrossRefGoogle Scholar
  93. McCarthy K, Walker L, Vigoren L, Barte J (2004) Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg Sci Tech 40(1–2):31–39CrossRefGoogle Scholar
  94. McGenity TJ (2010) Halophilic Hydrocarbon Degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin/Heidelberg, pp 1939–1951CrossRefGoogle Scholar
  95. McKenna J, Kallio RE (1965) The biology of hydrocarbons. Annu Rev Microbiol 3:251–264Google Scholar
  96. Mehdi D, Schraft H, Tarannum AS, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1):36–50Google Scholar
  97. Mironov VL, Muzalevskiy KV, Anna S (2015) Measuring soil temperature and moisture of arctic tundra based on SMOS and ALOS PALSAR data. Published in Conference Proceedings Control and Communications (SIBCON), 2015 International Siberian Conference Rusia on 21–23 May 2015. Accession No 15287525.
  98. Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mohsenzadeh F, Chehregani Rad A, Akbari M (2012) Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J Environ Health Sci Eng 9(26–29):20Google Scholar
  100. Mooshammer M, wanek W, Hammerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Boltenstern SZ, Richter A (2014) Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature Comm 5(3694):1–7Google Scholar
  101. Müller M, Schwab N, Schickhoff U, Böhner J, Scholten T (2016) Soil temperature and soil moisture patterns in a Himalayan alpine treeline ecotone. Arctic Antarctic Alpine Res 48(3):501–521CrossRefGoogle Scholar
  102. Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 15(4):4968. CrossRefGoogle Scholar
  103. Nuttall M (2004) Encyclopedia of the Arctic, 1st edn. Routledge, New YorkGoogle Scholar
  104. Pankowski JA, Puckett SM, Nano FE (2013) Temperature sensitivity conferred by ligA Alleles from psychrophilic bacteria upon substitution in mesophilic bacteria and a yeast species. Nature 281Google Scholar
  105. Paré MC, Bedard-Haughn A (2013) Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub- to high Arctic. Glob Chang Biol 19(4):1126–1140PubMedCrossRefPubMedCentralGoogle Scholar
  106. Parthipan P, Elumalai P, Sathishkumar K, Sabarinathan D, Murugan K, Benelli G, Rajasekar A (2017) Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. Biotech 7(5):278–289Google Scholar
  107. Paudyn K, Rutter AR, Rowe K, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53(1):102–114CrossRefGoogle Scholar
  108. Pérez-Pantoja D, González DB, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/HeidelbergGoogle Scholar
  109. Poehlein A, Daniel R, Thurmer A, Bollinger A, Thies S, Jatzje N, Jaeger KE (2017) First Insights into the Genome Sequence of Pseudomonas oleovorans DSM 1045. Genome Announc 5(32):00774–00717CrossRefGoogle Scholar
  110. Prakash V, Saxena S, Sharma A, Singh S, Singh SK (2015) Treatment of oil sludge contamination by composting. J Bioremed Biodegr 6(3):284–290Google Scholar
  111. Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55(3):210–217CrossRefGoogle Scholar
  112. Ren T, Wang J, Chen Q, Zhang F, Lu S (2014) The Effects of Manure and Nitrogen Fertilizer Applications on Soil Organic Carbon and Nitrogen in a High-Input Cropping System. Plus One 9(5):7732Google Scholar
  113. Reynolds JF, Smith DMS, Lambin EF, Turner B, Mortimore M, Batterbury SP, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE (2007) Global desertification: building a science for dryland development. Science 316(5826):847–851PubMedCrossRefGoogle Scholar
  114. Rosenberg E, Ron EZ (1996) Bioremediation of petroleum contamination. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and application. Cambridge University Press, Cambridge, pp 100–124CrossRefGoogle Scholar
  115. Roth NG, Wheaton RB (1962) Continuity of psychrophilic and mesophilic growth characteristics in the genus arthrobacter. J Bacteriol 83:551–555PubMedPubMedCentralGoogle Scholar
  116. Sanscartier D, Laing T, Reimer K, Zeeb B (2009) Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere 77(8):1121–1126PubMedCrossRefGoogle Scholar
  117. Schoonover JE, Crim JF (2015) Introduction to soil concepts and the role of soils in watershed management. J Contemp Water Res Edu 154:21–47CrossRefGoogle Scholar
  118. Seckbach J (2013) Enigmatic microorganisms and life in extreme environments. Springer, DordrechtGoogle Scholar
  119. Singh AK, Swaranjit SC (2013) Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res 20(10):7367–7376CrossRefGoogle Scholar
  120. Singh OV, Nagaraj NS, Gabani P (2011) Systems biology: integrating ‘-omics’ oriented approaches to determine foodborne microbial toxins. In: Sahu SC, Casciano DA (eds) Handbook of Systems Toxicology: From Omcis Technology to Nanotechnology. Wiley, New York, pp 469–488Google Scholar
  121. Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeter Biodegr 101:56–65CrossRefGoogle Scholar
  122. Snelgrove J (2010) Biopile bioremediation of petroleum hydrocarbon contaminated soils from a Sub-Arctic Site. Master Thesis submitted to the Department of Civil Engineering and Applied Mechanics McGill University, Montreal October, 2010Google Scholar
  123. Sobek S, Anderson NJ, Bernasconi SM, Del Sontro T (2014) Low organic carbon burial efficiency in arctic lake sediments. J Geophys Res Biogeosci 119:1231–1243CrossRefGoogle Scholar
  124. Sood N, Patle S, Lal B (2010) Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6. Environ Sci Pollut Res Int 17(3):603–610PubMedCrossRefGoogle Scholar
  125. Sorkhoh NA, Ibrahim AS, Ghannoum MA, Radwan SS (1993) High-temperature hydrocarbon degradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl Microbiol Biotech 39(1):123–126CrossRefGoogle Scholar
  126. Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82:326–340PubMedCrossRefGoogle Scholar
  127. Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AA, Grotenhuis T, Rijnaarts HH, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79(2):619–630PubMedPubMedCentralCrossRefGoogle Scholar
  128. Swindles GT, Morris PJ, Mullan D, Watson EJ, Turner TE, Roland TP, Matthew JA, Ulla K, Kristian S, Steve P, Angela GS, Charman DJ, Gameau M, Carrivick JL, Woulds C, Holden J, Parry L, Galloway JM (2017) The long-term fate of permafrost peatlands under rapid climate warming. Sci Rep 5:17951CrossRefGoogle Scholar
  129. Tang H, Chen M, Simon KY, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng PubMedCrossRefGoogle Scholar
  130. Throne-Holst M, Markussen S, Winnberg A, Ellingsen TE, Kotlar HK, Zotchev SB (2006) Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol 72(2):353–360PubMedCrossRefGoogle Scholar
  131. Tomás-Gallardo L, Gómez-Álvarez H, Santero E, Floriano B (2014) Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB. Microb Biotechnol 7(2):100–113PubMedCrossRefGoogle Scholar
  132. Tribelli PM, Iustman LJR, Catone MV, Martina CF, Revale S, Mendez BS, Lopez NL (2012) Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress resistant antarctic bacterium. Bacteriology 194(9):2381–2382CrossRefGoogle Scholar
  133. Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Raiger Iustman LJ, Lopez NI (2017) Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. J Ind Microbiol Biotechnol. CrossRefGoogle Scholar
  134. Tribelli PM, Rossi L, Ricardi MM (2018) Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. J Ind Microbiol Biotechnol 45:15–23. CrossRefPubMedPubMedCentralGoogle Scholar
  135. Tsao DT (2003) Overview of phytotechnologies. Adv Biochem Eng Biotechnol 78:1–50PubMedPubMedCentralGoogle Scholar
  136. Undugoda LJS, Kannangara S, Sirisena DM (2016) Genetic Basis of Naphthalene and Phenanthrene Degradation by Phyllosphere Bacterial Strains Alcaligenes faecalis and Alcaligenes sp. 11SO. J Bioremed Biodegr 7:333–337Google Scholar
  137. Usman MM, Dadrasnia A, Lim KT, Ahmad FM, Salmah I (2016) Application of biosurfactants in environmental biotechnology, remediation of oil and heavy metal. AIMS Bioeng 3(3):289–304CrossRefGoogle Scholar
  138. Van Beilen JB, Kingma J, Witholt B (1994) Substrate specificity of the hydroxylase system of pseudomonas oleovorans GPoI. Enzyme Microbial Technol 16:904–911CrossRefGoogle Scholar
  139. Van Beilen JB, Penker S, Lucchinni Franchini AG, Rothlisburger M, Witholt B (2001) Analysis of Pseudomonas putida alkane degradation gene cluster and flanking insertion sequences evolution and regulation of the alk genes. Microbiology 147:1621–1630PubMedCrossRefPubMedCentralGoogle Scholar
  140. Van Beilen JB, Smits TH, Whyte LG, Schorcht S, Rothlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002) Alkane hydroxylase homologues in Gram position strains. Environ Microbiol 4:676–682PubMedCrossRefPubMedCentralGoogle Scholar
  141. Van der Linden AC, Thijsee GJE (1965) Advance Enzymology 27: 469–546Google Scholar
  142. Van-Camp L, Bujarrabal B, Gentile AR, Jones RJA, Montanarella L, Olazabal C, Selvaradjou SK (2004) Reports of the technical working groups established under the thematic strategy for soil protection, EUR 21319 EN/4., p 872. Office of Official Publications of the European Communities, LuxembourgGoogle Scholar
  143. Vdovenkoa AV, Manaenkova AS, Radochinskayab LP (2015) Dynamics of the state of desertified agricultural lands in the South of Russia. Russian Agri Sci 41(6):476–480CrossRefGoogle Scholar
  144. Vinothini C, Sudhakar S, Ravikumar R (2015) Biodegradation of petroleum and crude oil by Pseudomonas putida and Bacillus cereus. Int J Curr Microbiol App Sci 4(1):318–329Google Scholar
  145. Walvoord MA, Kurylvk BL (2016) Hydrologic impacts of thawing permafrost—a review. Vadose Zone J 15(6). vzj2016.01.0010CrossRefGoogle Scholar
  146. Walworth J, Pond A, Snape I, Rayner J, Ferguson S, Harvey P (2007) Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg Sci Technol 48:84–91CrossRefGoogle Scholar
  147. Wang HQ, Hsieh YP, Harwell MA, Huang WR (2007) Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions. Ecol Model 201(3–4):429–439CrossRefGoogle Scholar
  148. Wang NF, Zhang T, Yang X, Wang S, Yu Y, Dong LL, Guo DY, Ma YX, Zang JY (2016) Diversity and composition of bacterial community in soils and Lake Sediments from an Arctic Lake Area. Front Microbiol 7:1170PubMedPubMedCentralGoogle Scholar
  149. Warcup JH (1951) The ecology of soil fungi. Trans Br Mycol Soc 34:376–399CrossRefGoogle Scholar
  150. White DM, Garland DS, Ping C-L, Michaelson G (2013) Characterizing soil organic matter quality in arctic soil by cover type and depth. Procedia Environ Sci 18:694–702CrossRefGoogle Scholar
  151. Whyte LG, Smits THM, Labbe D, Witholt B, Greer CW, van Beilen JB (2002) Gene Cloning and Characterization of Multiple Alkane Hydroxylase Systems in Rhodococcus Strains Q15 and NRRL B-16531. Appl Environ Microbiol 68(12):5933–5942PubMedPubMedCentralCrossRefGoogle Scholar
  152. Williams KP, Gillespie JJ, Sobral BWS, Nordberg EK, Snyder EE, Shallom JM et al (2010) Phylogeny of Gammaproteobacteria. J Bacteriol 192:2305–2314PubMedPubMedCentralCrossRefGoogle Scholar
  153. Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8(2):740–757Google Scholar
  154. Yamanaka T (2003) The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia 95:584–589PubMedCrossRefPubMedCentralGoogle Scholar
  155. Yang S, Xi W, Zhao L, Shi Y, Jin H (2014) Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia crude oil pipeline route. PLoS One 9(5):e96552PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yang S, Xi W, Shi Y, Susanne L, Huijun J, Amedea P (2016) Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci Rep 6:37473PubMedPubMedCentralCrossRefGoogle Scholar
  157. Yang Z, Yang S, Van Nostrand JD, Zhou W-F, Qi Q, Liu Y, Stan D, Wullschleger LL, Graham DE, Yang Y, Gu B (2017) Microbial community and functional gene changes in Arctic Tundra soils in a microcosm warming experiment. Front Microbiol 19(19):1741CrossRefGoogle Scholar
  158. Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian High Arctic Soils. PLoS One 7(1):e30058. CrossRefPubMedPubMedCentralGoogle Scholar
  159. Yumoto I (2013) Cold-adapted microorganisms. Horizon Scientific Press, Science 226 pagesGoogle Scholar
  160. Zampolli J, Collina E, Lasagni M, Gennaro PD (2014a) Biodegradation of variable chain length nalkanes in Rhodococcus opacus. AMB Express 4:73PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zampolli J, Collina E, Lasagni M, Gennaro PD (2014b) Biodegradation of variable chain length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. AMB Express 4:73–79PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zhang J, Dai J, Du X, Li F, Wang W, Wang R (2012) Distribution and sources of petroleum-hydrocarbon in soil profiles of the Hunpu wastewater-irrigated area, China’s northeast. Geoderma 173–174:215–223CrossRefGoogle Scholar
  163. ZoBell CE (1950) Bacterial activities and the origin of oil. World Oil 130:128–138Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Samina Siddiqui
    • 1
  • Asghari Bano
    • 2
  1. 1.National Centre of Excellence in GeologyUniversity of PeshawarPeshawarPakistan
  2. 2.Department of BiosciencesUniversity of WahWah CanttPakistan

Personalised recommendations