Skip to main content

The Role of Microbes Toward Biodegradation of Hydrocarbons

  • Chapter
  • First Online:
Book cover Microbial Action on Hydrocarbons

Abstract

Environment contamination by hydrocarbons (HC) has caused lots of implications and the use of HCs has been increasing over the years due to their several applications in different industries. HCs are compounds composed of hydrogen and carbon; it is described as an enormous contaminant with carcinogenic, mutagenic, and toxicity potential for the flora and fauna. HCs are very difficult to get rid of the environment as they are difficult to degrade. Accidental release of the petroleum products leads to the degradation of the environment. Oil spills in the ocean, crude oil-carrying pipeline leakages, production of by-products, and HC refining lead to environment pollution which is causing loss of biodiversity. The search for the natural methods for the degradation of HCs and their by-products has increased with the advancement of technologies as they are creating lots of environmental problems. In this book chapter, we have tried to sum up all the environment-friendly remediation methods for the removal of HCs such as phytoremediation, rhizoremediation, bioaugmentation, and bioremediation by enzymes, algae, bacteria, fungi, microbial consortium, and protozoans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atlas R, Ronald M (1991) Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biotechnol 2:149–156

    Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Bartha R (1986) Biotechnology of petroleum pollutant biodegradation. Microb Ecol 12(1):155–172

    Article  CAS  Google Scholar 

  • Beam HW, Perry JJ (1974) Microbial degradation of cycloparaffinic hydrocarbons via cometabolism and commensalism. J Gen Microbiol 82(1):163–169

    Article  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    Article  CAS  Google Scholar 

  • Cerniglia CE, Van Baalen C, Gibson DT (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. Microbiology 116(2):485–494

    Article  CAS  Google Scholar 

  • Chen X, Liu M, Hu F, Mao X, Li H (2007) Contributions of soil micro-fauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecol Sin 27:3132–3143

    Article  CAS  Google Scholar 

  • Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol 32(4):255–261

    Article  CAS  Google Scholar 

  • Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep-sea sediments of the middle Atlantic ridge. Environ Microbiol 10(8):2138–2149

    Article  CAS  Google Scholar 

  • Dalvi S, Azetsu S, Patrauchan MA, Aktas DF, Fathepure BZ (2012) Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. strain Rozel, isolated from a hypersaline environment. Appl Environ Microbiol 78(20):7309–7316

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13

    Google Scholar 

  • Di Cello F, Pepi M, Baldi F, Fani R (1997) Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus. Res Microbiol 148(3):237–249

    Article  Google Scholar 

  • Dzomback DA, Luthy RG (1984) Estimating adsorption of polycyclic aromatic hydrocarbons on soils. Soil Sci 137(5):292–308

    Article  Google Scholar 

  • Erickson LE, Davis LC, Narayanam M (1995) Bioenergetics and bioremediation of contaminated soil. Thermochim Acta 250:353–358

    Article  CAS  Google Scholar 

  • Eweis JB, Ergas SJ, Chang DPY, Schroeder ED (1998) Biodegradation of selected compounds. In: Bioremediation principles. McGraw-Hill International, Singapore, pp 120–135

    Google Scholar 

  • Garcia MT, Gallego V, Ventosa A, Mellado E (2005) Thalassobacillus devorans gen. Nov., sp. nov., a moderately halophilic, phenol-degrading, gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795

    Google Scholar 

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 4:568–576

    Google Scholar 

  • Gibson DT (1988) Microbial metabolism of aromatic hydrocarbon and the carbon cycle. In: Microbial metabolism and the carbon cycle. Harwood Academic Publishers, Chur

    Google Scholar 

  • Gibson DT, Cardini GE, Maseles FC, Kallio RE (1970) Oxidative degradation of aromatic hydrocarbons by microorganisms. IV. Incorporation of oxygen- 18 into benzene by pseudomonas putida. Biochemist 9(7):1631–1635

    Article  CAS  Google Scholar 

  • Goyal AK, Zylstra GJ (1996) Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comernones tastostaroni 6239. Appl Environ Microbiol 62:230–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grifoll M, Selifonov SA, Gatlin CV, Chapman PJ (1995) Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol 61:3711–3723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaud R, Ghiglione JF, Cagnon C, Lauga V, Vaysse PJ, Rodriguez-Blanco A, Mangenot S, Cruveiller S, Barbe V, Duran R, Wu LF (2012) Genome sequence of the marine bacterium Marinobacter hydrocarbonoclasticus SP17, which forms biofilms on hydrophobic organic compounds. J Bacteriol 194(13):3539–3540

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1966) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    Google Scholar 

  • Iwabuchi T, Inomata-Yamauchi Y, Katsuta A, Harayama S (1998) Isolation and characterization of marine Nocardioides capable of growing and degrading phenanthrene at 42-C. J Mar Biotechnol B 6:86–90

    CAS  Google Scholar 

  • Kaldalu M, Toots U, De Lorenzo V, Ustav M (2000) Functional domains of the TOL plasmid transcription factor XyIS. J Bacteriol 4:1118–1126

    Article  Google Scholar 

  • Kerr RP, Capone DG (1988) Effect of salinity on microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. Mar Environ Resour 3:181–198

    Article  Google Scholar 

  • Kothari V, Panchal M, Srivastava N (2013) Microbial degradation of hydrocarbons. Institute of Science, Nirma University, Ahmedabad

    Google Scholar 

  • Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Publ Health 6(4):1393–1417

    Article  Google Scholar 

  • Maier RM (2000) Microorganisms and organic pollutants. In: Environmental microbiology. Academic, San Diego, pp 363–400

    Google Scholar 

  • Matavulj M, Molitoris HP (2009) Marine fungi: degraders of poly-3-hydroxyalkanoate based plastic materials. Zbornik Matice srpske za prirodne nauke 116:253–265

    Article  Google Scholar 

  • Mattison RG, Taki H, Harayama S (2005) The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 49:142–150

    Article  CAS  Google Scholar 

  • McEldowney S, Hardman DJ, Waite S (1993) Pollution: ecology and biotreatment. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Meulenberg R, Rijnaarts HHHM, Doddema HJ, Field JA (1997) Partially oxidised polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    Article  CAS  Google Scholar 

  • Miranda RDC, de Souza CS, Gomes EDB, Lovaglio RB, Lopes CE, de Queiroz Sousa MDFV (2007) Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the state of Pernambuco-Brazil. Braz Arch Biol Technol 50:147–152

    Article  CAS  Google Scholar 

  • Miya RK, Firestone MK (2000) Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J Environ Qual 29:584–592

    Article  CAS  Google Scholar 

  • Mortberg M, Neujahr HY (1985) Uptake of phenol by Trichosporon cutaneum. J Bacteriol 161:615–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–l066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61(3):261–267

    Article  Google Scholar 

  • Neder LdTC, Quintao SLdS, Santos AS (2004) Native semi-arid colonizing plants for phytoremediation of heavy metal- and PAH-contaminated soil. In: Monterey CA, Gavaskar AR, Chen ASC (eds) Fourth international conference on remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus

    Google Scholar 

  • Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997) Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut 95:165–178

    CAS  Google Scholar 

  • Park KS, Sims RC, Dupont RR (1990) Transformation of PAHs in soil systems. J Environ Eng 3:632–640

    Article  Google Scholar 

  • Reddy BR, Sethunathan N (1994) Mineralization of p-nitrophenol in the rhizosphere of rice. Agric Ecosyst Environ 47:313–317

    Article  CAS  Google Scholar 

  • Rochkind-Dubinsky ML, Blackburn JW, Sayler GS (1986) Microbial decomposition of chlorinated aromatic compounds. Hazardous Waste Engineering Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Rosenberg M, Bayer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae adherence and growth of Acinetobacter calcoaceticusRAG-1 on hexadecane. Appl Environ Microbiol 4:929–937

    Google Scholar 

  • Sierra-Garcia IN, de Oliveira VM (2013) Microbial hydrocarbon degradation: efforts to understand biodegradation in petroleum reservoirs, biodegradation – engineering and technology, Dr. Rolando Chamy. InTech

    Google Scholar 

  • Söhngen NL (1913) Benzin, Petroleum, Paraffinöl und Paraffin alsKohlenstoff- und Energiequellefür Mikroben. Zentr Bacteriol Parasitenk Abt 37:595–609

    Google Scholar 

  • Solanki P, Kothari V (2012) Metal tolerance in halotolerant bacteria isolated from saline soil of Khambhat. Res Biotechnol 3:1–11

    Google Scholar 

  • Sonawdekar S (2012) Bioremediation: a boon to hydrocarbon degradation. Int J Environ Sci 2:2408–2424

    CAS  Google Scholar 

  • Spellman FR (2008) Ecology for non-ecologists, 1st edn. Government Institutes, USA. ISBN: 13: 978-0865871977, 364

    Google Scholar 

  • Stapleton RD Jr, Singh VP (eds) (2002) Biotransformations: bioremediation technology for health and environmental protection, vol 36. Elsevier, Amsterdam

    Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–62

    Article  CAS  Google Scholar 

  • Sutherland JB, Rafii FA, Khan AA, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. Microbial transformation and degradation of toxic organic chemicals, vol 15, p 269

    Google Scholar 

  • Teramoto M, Suzuki M, Okazaki F, Hatmanti A, Harayama S (2009) Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology 155(10):3362–3370

    Article  CAS  Google Scholar 

  • Tsao DT (2003) Overview of phytotechnologies. Advances in biochemical engineering biotechnology, vol 78. Springer, New York, pp 1–50

    Google Scholar 

  • Ueno R, Wada S, Urano N (2008) Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can J Microbiol 54:66–70

    Article  CAS  Google Scholar 

  • Van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 3:308–314

    Article  Google Scholar 

  • Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21

    Article  CAS  Google Scholar 

  • Wang XC, Zhao HM (2007) Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. J Coast Res 50:1056–1061

    Google Scholar 

  • Widdel F, Musat F (2010) Diversity and common principles in enzymatic activation of hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 981–1009

    Chapter  Google Scholar 

  • Wilson S, Jones K (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs) – a review. Environ Pollut 81:229–249

    Article  CAS  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon degrading and surfactant producing marine bacterium. Int J Syst Evol Microbiol 2:339–348

    Google Scholar 

  • Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 6:2101–2106

    Google Scholar 

  • Zhou YY, Chen DZ, Zhu RY, Chen JM (2011) Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4. Bioresour Technol 102(12):6644–6649

    Article  CAS  Google Scholar 

Download references

Acknowledgment

G.K. is thankful to DST for Inspire Faculty award (IFA-12-CH-41) and PURSE grant II. R.K. is thankful to DST, SERB/F/8171/2015-16, as well as UGC (F. No. 194-2/2016 IC) for providing financial support. V.D. is thankful to UGC for JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dogra, V., Kumar, R., Kumar, S., Kaur, G. (2018). The Role of Microbes Toward Biodegradation of Hydrocarbons. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_25

Download citation

Publish with us

Policies and ethics