Skip to main content

Introduction to Smart Grid Architecture

  • Chapter
  • First Online:
Smart Grids and Their Communication Systems

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

Abstract

The smart grid that is a new concept introduced at the beginning of the 2000s intends to include bidirectional communication infrastructure to conventional grids in order to enable information and communication technologies (ICTs) at any stage of generation, transmission, distribution, and even consumption sections of utility grids. This chapter introduces essential components and novel technologies of smart grids such as sensor networks, smart metering and monitoring systems, smart management systems, wired and wireless communication technologies, security requirements, and standards and regulations for this concept. First of all, this chapter focuses on the main components of smart grids such as smart sensors and sensor networks, phasor measurement unit (PMU), smart meters (SMs), and wireless sensor networks (WSNs). Then, smart grid applications and main requirements are explained on the basis of advanced metering infrastructure (AMI), demand response (DR), station and substation automation, and demand-side management (DSM). Later, communication systems of smart grid are presented in which the communication systems are classified into two groups as wired and wireless communication systems, and they are comprehensively analyzed. Furthermore, the area networks related to smart grid concept such as home area network (HAN), building area network (BAN), industrial area network (IAN), neighborhood area network (NAN), field area network (FAN), and wide-area network (WAN) are presented in a logical way beginning from generation systems to the user side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Kabalci, A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 57, 302–318 (2016)

    Article  Google Scholar 

  2. E. Kabalci, Y. Kabalci, A wireless metering and monitoring system for solar string inverters. Electr. Power Energy Syst. 96, 282–295 (2018)

    Article  Google Scholar 

  3. E. Kabalci, A smart monitoring infrastructure design for distributed renewable energy systems. Energy Convers. Manag. 90, 336–346 (2015)

    Article  Google Scholar 

  4. E. Kabalci, Y. Kabalci, A measurement and power line communication system design for renewable smart grids. Meas. Sci. Rev. 13(5), (2013)

    Google Scholar 

  5. G.N. Sorebo, R. Echols, Smart grid security an end-to-end view of security in the new electrical grid (CRC Press, Boca Raton, FL, 2012)

    Google Scholar 

  6. US public law 110–140, energy independence and security act of 2007. pp. 1783–1794 (2007)

    Google Scholar 

  7. S.M. Muyeen, S. Rahman (eds.), Communication, control and security challenges for the smart grid (The Institution of Engineering and Technology, London, 2017)

    Google Scholar 

  8. IEEE Standards Committee, IEEE guide for smart grid interoperability of energy technology and information technology operation with the electric power system (EPS), end-use applications and loads (Institute of Electrical and Electronics Engineers, New York, N.Y., 2011)

    Google Scholar 

  9. X. Fang, S. Misra, G. Xue, D. Yang, Smart grid-the new and improved power grid: a survey. IEEE Commun. Surv. Tutor. 14(4), 944–980 (2012)

    Article  Google Scholar 

  10. N.S. Nafi, K. Ahmed, M.A. Gregory, M. Datta, A survey of smart grid architectures, applications, benefits and standardization. J. Netw. Comput. Appl. 76, 23–36 (2016)

    Article  Google Scholar 

  11. F. Li et al., Smart transmission grid: vision and framework. IEEE Trans. Smart Grid 1(2), 168–177 (2010)

    Article  Google Scholar 

  12. NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0 (2010)

    Google Scholar 

  13. K.C. Budka, J.G. Deshpande, M. Thottan, Communication Networks for Smart Grids (Springer, London, London, 2014)

    Book  Google Scholar 

  14. S.K. Salman, Introduction to the Smart Grid: Concept, Technologies and Evolution (The Institution of Engineering and Technology, London, United Kingdom, 2017)

    Google Scholar 

  15. A. Bernieri, L. Ferrigno, M. Laracca, A. Rasile, An AMR-based three-phase current sensor for smart grid applications. IEEE Sens. J. 17(23), 7704–7712 (2017)

    Article  Google Scholar 

  16. M.R. Hossain, A.M.T. Oo, A.B.M.S. Ali, Chapter 2 Smart Grid, in Smart Grids, ed. by A.B.M.S. Ali (Springer, London, London, 2013), pp. 23–44

    Chapter  Google Scholar 

  17. E. Kabalci, R. Bayindir, G. Gokkus, Y. Kabalci, in Renewable Energy Research and Applications (ICRERA), International Conference on, 2015, Dual DC-DC Converter and Monitoring Interface for Asymmetrical String Inverters, pp. 1580–1585

    Google Scholar 

  18. P. Gopakumar, M.J.B. Reddy, D.K. Mohanta, Phasor measurement sensor based angular stability retention system for smart power grids with high penetration of microgrids. IEEE Sens. J. 1–1 (2017)

    Google Scholar 

  19. G. Rietveld et al., Measurement infrastructure to support the reliable operation of smart electrical grids. IEEE Trans. Instrum. Meas. 1–1 (2015)

    Google Scholar 

  20. E.Y. Song, G.J. FitzPatrick, K.B. Lee, Smart sensors and standard-based interoperability in smart grids. IEEE Sens. J. 17(23), 7723–7730 (2017)

    Article  Google Scholar 

  21. Institute of Electrical and Electronics Engineers and IEEE-SA Standards Board, in IEEE Standard for Synchrophasor Data Transfer for Power Systems (Institute of Electrical and Electronics Engineers, New York, 2011)

    Google Scholar 

  22. T. Ahmad, Non-technical loss analysis and prevention using smart meters. Renew. Sustain. Energy Rev. 72, 573–589 (2017)

    Article  Google Scholar 

  23. B. Yildiz, J.I. Bilbao, J. Dore, A.B. Sproul, Recent advances in the analysis of residential electricity consumption and applications of smart meter data. Appl. Energy 208, 402–427 (2017)

    Article  Google Scholar 

  24. S. Erlinghagen, B. Lichtensteiger, J. Markard, Smart meter communication standards in Europe—a comparison. Renew. Sustain. Energy Rev. 43, 1249–1262 (2015)

    Article  Google Scholar 

  25. S. Kakran, S. Chanana, Smart operations of smart grids integrated with distributed generation: a review. Renew. Sustain. Energy Rev. 81, 524–535 (2018)

    Article  Google Scholar 

  26. C. Alcaraz, J. Lopez, A security analysis for wireless sensor mesh networks in highly critical systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40(4), 419–428 (2010)

    Google Scholar 

  27. M.M. Hasan, H.T. Mouftah, Optimal trust system placement in smart grid SCADA networks. IEEE Access 4, 2907–2919 (2016)

    Article  Google Scholar 

  28. A. Sajid, H. Abbas, K. Saleem, Cloud-assisted iot-based SCADA systems security: a review of the state of the art and future challenges. IEEE Access 4, 1375–1384 (2016)

    Article  Google Scholar 

  29. E. Fadel et al., A survey on wireless sensor networks for smart grid. Comput. Commun. 71, 22–33 (2015)

    Article  Google Scholar 

  30. F. Wang, J. Liu, Networked wireless sensor data collection: issues, challenges, and approaches. IEEE Commun. Surv. Tutor. 13(4), 673–687 (2011)

    Article  Google Scholar 

  31. N.K. Suryadevara, S.C. Mukhopadhyay, S.D.T. Kelly, S.P.S. Gill, WSN-Based smart sensors and actuator for power management in intelligent buildings. IEEEASME Trans. Mechatron. 20(2), 564–571 (2015)

    Article  Google Scholar 

  32. N.A. Pantazis, S.A. Nikolidakis, D.D. Vergados, Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(2), 551–591 (2013)

    Article  Google Scholar 

  33. I. Butun, S.D. Morgera, R. Sankar, A survey of intrusion detection systems in wireless sensor networks. IEEE Commun. Surv. Tutor. 16(1), 266–282 (2014)

    Article  Google Scholar 

  34. H. Sun (ed.), Smarter Energy: From Smart Metering to the Smart Grid (The Institution of Engineering and Technology, London, 2016)

    Google Scholar 

  35. Y. Kabalci, E. Kabalci, Modeling and analysis of a smart grid monitoring system for renewable energy sources. Sol. Energy 153, 262–275 (2017)

    Article  Google Scholar 

  36. Y. Kabalci, E. Kabalci, R. Canbaz, A. Calpbinici, Design and implementation of a solar plant and irrigation system with remote monitoring and remote control infrastructures. Sol. Energy 139, 506–517 (2016)

    Article  Google Scholar 

  37. Y. Kabalci, E. Kabalci, Design and implementation of wireless energy monitoring system for smart grids. Gazi Univ. J. Sci. Part C 5(2), 137–145 (2017)

    Google Scholar 

  38. E. Kabalci, Y. Kabalci, in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Remote Monitoring System Design for Photovoltaic Panels (2017), pp. 888–891

    Google Scholar 

  39. Y. Kabalci, E. Kabalci, in 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), A Low Cost Smart Metering System Design for Smart Grid Applications (2016), pp. 1–6

    Google Scholar 

  40. Z. Li, F. Yang, S. Mohagheghi, Z. Wang, J.C. Tournier, Y. Wang, Toward smart distribution management by integrating advanced metering infrastructure. Electr. Power Syst. Res. 105, 51–56 (2013)

    Article  Google Scholar 

  41. J. Zhou, R. Qingyang Hu, Y. Qian, Scalable distributed communication architectures to support advanced metering infrastructure in smart grid. IEEE Trans. Parallel Distrib. Syst. 23(9), 1632–1642 (2012)

    Google Scholar 

  42. A.F.A. Aziz, S.N. Khalid, M.W. Mustafa, H. Shareef, G. Aliyu, Artificial intelligent meter development based on advanced metering infrastructure technology. Renew. Sustain. Energy Rev. 27, 191–197 (2013)

    Article  Google Scholar 

  43. R. Rashed Mohassel, A. Fung, F. Mohammadi, K. Raahemifar, A survey on advanced metering infrastructure. Int. J. Electr. Power Energy Syst. 63, 473–484 (2014)

    Article  Google Scholar 

  44. M. Manbachi, H. Farhangi, A. Palizban, S. Arzanpour, Smart grid adaptive volt-VAR optimization: challenges for sustainable future grids. Sustain. Cities Soc. 28, 242–255 (2017)

    Article  Google Scholar 

  45. N. Good, K.A. Ellis, P. Mancarella, Review and classification of barriers and enablers of demand response in the smart grid. Renew. Sustain. Energy Rev. 72, 57–72 (2017)

    Article  Google Scholar 

  46. H.T. Haider, O.H. See, W. Elmenreich, A review of residential demand response of smart grid. Renew. Sustain. Energy Rev. 59, 166–178 (2016)

    Article  Google Scholar 

  47. P. Siano, Demand response and smart grids—a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014)

    Article  Google Scholar 

  48. A. Angioni et al., Design and implementation of a substation automation unit. IEEE Trans. Power Deliv. 32(2), 1133–1142 (2017)

    Article  Google Scholar 

  49. B. Vaidya, D. Makrakis, H.T. Mouftah, Authentication and authorization mechanisms for substation automation in smart grid network. IEEE Netw. 27(1), 5–11 (2013)

    Article  Google Scholar 

  50. Q. Huang, S. Jing, J. Li, D. Cai, J. Wu, W. Zhen, Smart substation: state of the art and future development. IEEE Trans. Power Deliv. 32(2), 1098–1105 (2017)

    Article  Google Scholar 

  51. M. Alizadeh, X. Li, Z. Wang, A. Scaglione, R. Melton, Demand-Side management in the smart grid: information processing for the power switch. IEEE Signal Process. Mag. 29(5), 55–67 (2012)

    Article  Google Scholar 

  52. F. Ye, Y. Qian, R.Q. Hu, A real-time information based demand-side management system in smart grid. IEEE Trans. Parallel Distrib. Syst. 27(2), 329–339 (2016)

    Article  Google Scholar 

  53. L. Song, Y. Xiao, M. van der Schaar, Demand side management in smart grids using a repeated game framework. IEEE J. Sel. Areas Commun. 32(7), 1412–1424 (2014)

    Article  Google Scholar 

  54. E. Kabalci, Y. Kabalci, I. Develi, Modelling and analysis of a power line communication system with QPSK modem for renewable smart grids. Int. J. Electr. Power Energy Syst. 34(1), 19–28 (2012)

    Article  Google Scholar 

  55. E. Yaacoub, A. Abu-Dayya, Automatic meter reading in the smart grid using contention based random access over the free cellular spectrum. Comput. Netw. 59, 171–183 (2014)

    Article  Google Scholar 

  56. Y. Yan, Y. Qian, H. Sharif, D. Tipper, A survey on smart grid communication infrastructures: motivations, requirements and challenges. IEEE Commun. Surv. Tutor. 15(1), 5–20 (2013)

    Article  Google Scholar 

  57. W. Wang, Y. Xu, M. Khanna, A survey on the communication architectures in smart grid. Comput. Netw. 55(15), 3604–3629 (2011)

    Article  Google Scholar 

  58. A. Usman, S.H. Shami, Evolution of communication technologies for smart grid applications. Renew. Sustain. Energy Rev. 19, 191–199 (2013)

    Article  Google Scholar 

  59. X. Lu, W. Wang, J. Ma, An empirical study of communication infrastructures towards the smart grid: design, implementation, and evaluation. IEEE Trans. Smart Grid 4(1), 170–183 (2013)

    Article  Google Scholar 

  60. M. Kuzlu, M. Pipattanasomporn, S. Rahman, Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput. Netw. 67, 74–88 (2014)

    Article  Google Scholar 

  61. R.H. Khan, J.Y. Khan, A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Comput. Netw. 57(3), 825–845 (2013)

    Article  Google Scholar 

  62. E. Ancillotti, R. Bruno, M. Conti, The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Comput. Commun. 36(17), 1665–1697 (2013)

    Article  Google Scholar 

  63. W. Li, X. Zhang, Simulation of the smart grid communications: challenges, techniques, and future trends. Comput. Electr. Eng. 40(1), 270–288 (2014)

    Article  Google Scholar 

  64. S. Galli, A. Scaglione, Z. Wang, For the grid and through the grid: the role of power line communications in the smart grid. Proc. IEEE 99(6), 998–1027 (2011)

    Article  Google Scholar 

  65. T. Khalifa, K. Naik, A. Nayak, A survey of communication protocols for automatic meter reading applications. IEEE Commun. Surv. Tutor. 13(2), 168–182 (2011)

    Article  Google Scholar 

  66. Z. Fan et al., Smart grid communications: overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutor. 15(1), 21–38 (2013)

    Article  Google Scholar 

  67. Q.-D. Ho, Y. Gao, T. Le-Ngoc, Challenges and research opportunities in wireless communication networks for smart grid. IEEE Wirel. Commun. 20(3), 89–95 (2013)

    Article  Google Scholar 

  68. S. Xu, Y. Qian, R.Q. Hu, On reliability of smart grid neighborhood area networks. IEEE Access 3, 2352–2365 (2015)

    Article  Google Scholar 

  69. A. Keyhani, A. Chatterjee, Automatic generation control structure for smart power grids. IEEE Trans. Smart Grid 3(3), 1310–1316 (2012)

    Article  Google Scholar 

  70. M.H. Variani, K. Tomsovic, Distributed automatic generation control using flatness-based approach for high penetration of wind generation. IEEE Trans. Power Syst. 28(3), 3002–3009 (2013)

    Article  Google Scholar 

  71. S. Liu, X.P. Liu, A. El Saddik, Modeling and distributed gain scheduling strategy for load frequency control in smart grids with communication topology changes. ISA Trans. 53(2), 454–461 (2014)

    Article  Google Scholar 

  72. N. Saputro, K. Akkaya, S. Uludag, A survey of routing protocols for smart grid communications. Comput. Netw. 56(11), 2742–2771 (2012)

    Article  Google Scholar 

  73. M.M. Rahman, C.S. Hong, S. Lee, J. Lee, M.A. Razzaque, J.H. Kim, Medium access control for power line communications: an overview of the IEEE 1901 and ITU-T G.hn standards. IEEE Commun. Mag. 49(6), 183–191 (2011)

    Article  Google Scholar 

  74. J. Brown, J.Y. Khan, Key performance aspects of an LTE FDD based smart grid communications network. Comput. Commun. 36(5), 551–561 (2013)

    Article  Google Scholar 

  75. Y. Xu, W. Wang, Wireless mesh network in smart grid: modeling and analysis for time critical communications. IEEE Trans. Wirel. Commun. 12(7), 3360–3371 (2013)

    Article  Google Scholar 

  76. Z. Zhu, S. Lambotharan, W.H. Chin, Z. Fan, Overview of demand management in smart grid and enabling wireless communication technologies. IEEE Wirel. Commun. 19(3), 48–56 (2012)

    Article  Google Scholar 

  77. R. Ma, H.-H. Chen, Y.-R. Huang, W. Meng, Smart grid communication: its challenges and opportunities. IEEE Trans. Smart Grid 4(1), 36–46 (2013)

    Article  Google Scholar 

  78. H. Wang, Y. Qian, H. Sharif, Multimedia communications over cognitive radio networks for smart grid applications. IEEE Wirel. Commun. 20(4), 125–132 (2013)

    Article  Google Scholar 

  79. D. Niyato, P. Wang, Cooperative transmission for meter data collection in smart grid. IEEE Commun. Mag. 50(4), 90–97 (2012)

    Article  Google Scholar 

  80. P. Kulkarni, S. Gormus, Z. Fan, B. Motz, A mesh-radio-based solution for smart metering networks. IEEE Commun. Mag. 50(7), 86–95 (2012)

    Article  Google Scholar 

  81. A. Meloni, L. Atzori, The role of satellite communications in the smart grid. IEEE Wirel. Commun. 24(2), 50–56 (2017)

    Article  Google Scholar 

  82. S. Alam, M.F. Sohail, S.A. Ghauri, I.M. Qureshi, N. Aqdas, Cognitive radio based smart grid communication network. Renew. Sustain. Energy Rev. 72, 535–548 (2017)

    Article  Google Scholar 

  83. Federal Communications Commission, Spectrum policy task force report, Washington, USA, ET Docket No. 02–135 (2002)

    Google Scholar 

  84. I.F. Akyildiz, W.-Y. Lee, M.C. Vuran, S. Mohanty, Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 50(13), 2127–2159 (2006)

    Article  Google Scholar 

  85. T. Le Nghia, W.-L. Chin, H.-H. Chen, Standardization and security for smart grid communications based on cognitive radio technologies—a comprehensive survey. IEEE Commun. Surv. Tutor. 19(1), 423–445 (2017)

    Article  Google Scholar 

  86. E.U. Ogbodo, D. Dorrell, A.M. Abu-Mahfouz, Cognitive radio based sensor network in smart grid: architectures, applications and communication technologies. IEEE Access 5, 19084–19098 (2017)

    Article  Google Scholar 

  87. J. Huang, H. Wang, Y. Qian, C. Wang, Priority-Based traffic scheduling and utility optimization for cognitive radio communication infrastructure-based smart grid. IEEE Trans. Smart Grid 4(1), 78–86 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersan Kabalci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabalci, E., Kabalci, Y. (2019). Introduction to Smart Grid Architecture. In: Kabalci, E., Kabalci, Y. (eds) Smart Grids and Their Communication Systems. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-1768-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1768-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1767-5

  • Online ISBN: 978-981-13-1768-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics