Brain Reward Circuit and Pain

  • Moe Watanabe
  • Minoru NaritaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)


Pain plays an important role in alerting the body to potential tissue injury and drives behavior that protects the body from further harm. In contrast, chronic pain does not serve this function and instead only provides a persistent sensation of pain and a negative experience. The mesolimbic dopaminergic system has been recognized to play a central role in motivated behaviors, including various types of reward and pleasure. Many dopaminergic neurons may release multiple neurotransmitters, and the physiological role of the co-release of these transmitters has been revealed incrementally. However, it was not yet clear whether the mesolimbic dopaminergic system and small molecules released in the nucleus accumbens (N.Acc.), the input region of mesolimbic dopaminergic neurons, are involved in pain modulation. Recently, we revealed that the mesolimbic dopaminergic system and small molecules released in the N.Acc. could contribute to pain modulation. In this review, we provide an overview of the relationship between pain and the brain reward circuit using a combination of optogenetics, electrophysiology, and in vivo microdialysis/mass spectrometry integrated system.


Dopamine Ventral tegmental area Nucleus accumbens Morphine 



This work was supported by MEXT-Supported Program for the Strategic Research Foundation at Private Universities No.S1411019.


  1. 1.
    Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JD (2006) Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50(3):507–517. CrossRefPubMedGoogle Scholar
  2. 2.
    Baliki MN, Geha PY, Fields HL, Apkarian AV (2010) Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66(1):149–160. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47(1):129–141. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Becker S, Ceko M, Louis-Foster M, Elfassy NM, Leyton M, Shir Y, Schweinhardt P (2013) Dopamine and pain sensitivity: neither sulpiride nor acute phenylalanine and tyrosine depletion have effects on thermal pain sensations in healthy volunteers. PLoS One 8(11):e80766. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Becker S, Gandhi W, Schweinhardt P (2012) Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci Lett 520(2):182–187. CrossRefPubMedGoogle Scholar
  6. 6.
    Berger A, Dukes EM, Oster G (2004) Clinical characteristics and economic costs of patients with painful neuropathic disorders. J Pain 5(3):143–149. CrossRefPubMedGoogle Scholar
  7. 7.
    Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191(3):391–431. CrossRefGoogle Scholar
  8. 8.
    Blanchet PJ, Brefel-Courbon C (2017) Chronic pain and pain processing in Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry. CrossRefPubMedGoogle Scholar
  9. 9.
    Borsook D, Linnman C, Faria V, Strassman AM, Becerra L, Elman I (2016) Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 68:282–297. CrossRefPubMedGoogle Scholar
  10. 10.
    Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106(12):4894–4899. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    D’Ardenne K, McClure SM, Nystrom LE, Cohen JD (2008) BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319(5867):1264–1267. CrossRefPubMedGoogle Scholar
  13. 13.
    Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64(3):327–337. CrossRefPubMedGoogle Scholar
  14. 14.
    Fields HL (1999) Pain: an unpleasant topic. Pain Suppl 6:S61–S69CrossRefGoogle Scholar
  15. 15.
    Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4(11):2866–2876CrossRefPubMedGoogle Scholar
  16. 16.
    Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39. CrossRefPubMedGoogle Scholar
  17. 17.
    Inoue K (2009) Neurotransmitter. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin, pp 2834–2834. CrossRefGoogle Scholar
  18. 18.
    Kupfermann I (1991) Functional studies of cotransmission. Physiol Rev 71(3):683–732CrossRefPubMedGoogle Scholar
  19. 19.
    Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76(Pt B):351–359. CrossRefGoogle Scholar
  20. 20.
    Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491(7423):212–217. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Leknes S, Tracey I (2008) A common neurobiology for pain and pleasure. Nat Rev Neurosci 9(4):314–320. CrossRefPubMedGoogle Scholar
  22. 22.
    Loggia ML, Berna C, Kim J, Cahalan CM, Gollub RL, Wasan AD, Harris RE, Edwards RR, Napadow V (2014) Disrupted brain circuitry for pain-related reward/punishment in fibromyalgia. Arthritis Rheumatol 66(1):203–212. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cowan MW, (2001). A brief history of synapses and synaptic transmissionGoogle Scholar
  24. 24.
    Maeda T, Shimo Y, Chiu SW, Yamaguchi T, Kashihara K, Tsuboi Y, Nomoto M, Hattori N, Watanabe H, Saiki H, Group J-F (2017) Clinical manifestations of nonmotor symptoms in 1021 Japanese Parkinson’s disease patients from 35 medical centers. Parkinsonism Relat Disord 38:54–60. CrossRefPubMedGoogle Scholar
  25. 25.
    Mantyh P (2013) Bone cancer pain: causes, consequences, and therapeutic opportunities. Pain 154(Suppl 1):S54–S62. CrossRefPubMedGoogle Scholar
  26. 26.
    Martikainen IK, Nuechterlein EB, Peciña M, Love TM, Cummiford CM, Green CR, Stohler CS, Zubieta JK (2015) Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J Neurosci 35(27):9957–9965. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    McWilliams LA, Cox BJ, Enns MW (2003) Mood and anxiety disorders associated with chronic pain: an examination in a nationally representative sample. Pain 106(1–2):127–133CrossRefPubMedGoogle Scholar
  28. 28.
    Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A, Sferrazza C, Zucker-Scharff I, Siena AC, Welch MG, Lizardi-Ortiz J, Sulzer D, Moore H, Gaisler-Salomon I, Rayport S (2017) Dopamine neuron dependent behaviors mediated by glutamate cotransmission. Elife 6. doi:
  29. 29.
    Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379(6564):449–451. CrossRefPubMedGoogle Scholar
  30. 30.
    Morales M, Margolis EB (2017) Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 18(2):73–85. CrossRefPubMedGoogle Scholar
  31. 31.
    Navratilova E, Porreca F (2014) Reward and motivation in pain and pain relief. Nat Neurosci 17(10):1304–1312. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F (2012) Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A 109(50):20709–20713. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Niikura K, Narita M, Butelman ER, Kreek MJ, Suzuki T (2010) Neuropathic and chronic pain stimuli downregulate central mu-opioid and dopaminergic transmission. Trends Pharmacol Sci 31(7):299–305. CrossRefPubMedGoogle Scholar
  34. 34.
    Ozaki S, Narita M, Iino M, Sugita J, Matsumura Y, Suzuki T (2002) Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J Neurochem 82(5):1192–1198CrossRefPubMedGoogle Scholar
  35. 35.
    Ramdani C, Carbonnell L, Vidal F, Béranger C, Dagher A, Hasbroucq T (2015) Dopamine precursors depletion impairs impulse control in healthy volunteers. Psychopharmacology (Berl) 232(2):477–487. CrossRefGoogle Scholar
  36. 36.
    Rebouças EC, Segato EN, Kishi R, Freitas RL, Savoldi M, Morato S, Coimbra NC (2005) Effect of the blockade of mu1-opioid and 5HT2A-serotonergic/alpha1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology (Berl) 179(2):349–355. CrossRefGoogle Scholar
  37. 37.
    Ren W, Centeno MV, Berger S, Wu Y, Na X, Liu X, Kondapalli J, Apkarian AV, Martina M, Surmeier DJ (2016) The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat Neurosci 19(2):220–222. CrossRefPubMedGoogle Scholar
  38. 38.
    Roy M, Peretz I, Rainville P (2008) Emotional valence contributes to music-induced analgesia. Pain 134(1–2):140–147. CrossRefPubMedGoogle Scholar
  39. 39.
    Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schultz W (2002) Getting formal with dopamine and reward. Neuron 36(2):241–263CrossRefPubMedGoogle Scholar
  41. 41.
    Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30(5):203–210. CrossRefPubMedGoogle Scholar
  42. 42.
    Steinberg EE, Janak PH (2013) Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 1511:46–64. CrossRefPubMedGoogle Scholar
  43. 43.
    Stubbs B, Thompson T, Acaster S, Vancampfort D, Gaughran F, Correll CU (2015) Decreased pain sensitivity among people with schizophrenia: a meta-analysis of experimental pain induction studies. Pain 156(11):2121–2131. CrossRefPubMedGoogle Scholar
  44. 44.
    Watanabe M, Narita M, Hamada Y, Yamashita A, Tamura H, Ikegami D, Kondo T, Shinzato T, Shimizu T, Fukuchi Y, Muto A, Okano H, Yamanaka A, Tawfik VL, Kuzumaki N, Navratilova E, Porreca F (2018) Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Mol Pain 14. 1744806918756406. doi: CrossRefGoogle Scholar
  45. 45.
    Watanabe M, Sugiura Y, Sugiyama E, Narita M, Navratilova E, Kondo T, Uchiyama N, Yamanaka A, Kuzumaki N, Porreca F (2018) Extracellular N-acetylaspartylglutamate released in the nucleus accumbens modulates the pain sensation: analysis using a microdialysis/mass spectrometry integrated system. Mol Pain 14. 1744806918754934. doi: CrossRefGoogle Scholar
  46. 46.
    Wiech K, Tracey I (2013) Pain, decisions, and actions: a motivational perspective. Front Neurosci 7:46. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wood PB (2008) Role of central dopamine in pain and analgesia. Expert Rev Neurother 8(5):781–797. CrossRefPubMedGoogle Scholar
  48. 48.
    Wood PB, Patterson JC, Sunderland JJ, Tainter KH, Glabus MF, Lilien DL (2007) Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J Pain 8(1):51–58. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PharmacologyHoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan
  2. 2.Life Science Tokyo Advanced Research Center (L-StaR)Hoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan

Personalised recommendations