Skip to main content

Compressive Sensing Approach to Satellite Hyperspectral Image Compression

  • Conference paper
  • First Online:
Information and Communication Technology for Intelligent Systems

Abstract

Hyperspectral image (HSI) processing plays a very important role in satellite imaging applications. Sophisticated sensors on-board the satellite generates huge hyperspectral datasets since they capture a scene across different wavelength regions in the electromagnetic spectrum. The memory available for storage and bandwidth available to transmit data to the ground station is limited in case of satellites. As a result, compression of hyperspectral satellite images is very much necessary. The research work proposes a new algorithm called SHSIR (sparsification of hyperspectral image and reconstruction) for the compression and reconstruction of HSI acquired using compressive sensing (CS) approach. The proposed algorithm is based on the linear mixing model assumption for hyperspectral images. Compressive sensing measurements are generated by using measurement matrices containing Gaussian i.i.d. entries. HSI is reconstructed using Bregman iterations, which advance the reconstruction accuracy as well as the noise robustness. The proposed algorithm is compared with state-of-the-art compressive sensing approaches for HSI compression and the proposed algorithm performs better than existing techniques both in terms of reconstruction accuracy as well as noise robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunasheela, K.S., Prasantha, H.S.: Satellite Image Compression-Detailed Survey of the Algorithms, Proceedings of ICCR in LNNS Springer, vol. 14, pp. 187–198 (2017)

    Google Scholar 

  2. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  3. Tropp, J.: Just relax: convex programming methods for identifying sparse signals. IEEE Trans. Inf. Theory 51, 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

  4. Martín, G., Bioucas-Dias, J.M.: Hyperspectral blind reconstruction from random spectral projections. In: Proc. IEEE JSTARS, 2390–2399 (2016)

    Google Scholar 

  5. Agathos, A., Li, J., Bioucas-Dias, J.M., Plaza, A.: Robust minimum volume simplex analysis for hyperspectral unmixing. In: 22nd European Signal Processing Conference (EUSIPCO). Lisbon, pp. 1582–1586 (2014)

    Google Scholar 

  6. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  7. Xu, Z., Figueiredo, M.A.T., Goldstein, T.: Adaptive ADMM with spectral penalty parameter selection. In: International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 54, pp. 718–727, July 2017

    Google Scholar 

  8. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms forl1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 142–168 (2008)

    Google Scholar 

  9. http://www.tec.army.mil/Hypercube

  10. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  11. Zhang, L., Wei, W., Zhang, Y., Tian, C., Li, F.: Exploring structural sparsity by a Reweighted laplace prior for hyperspectral compressive sensing. IEEE Trans. Image Process. 25, 4974–4988 (2016)

    Article  MathSciNet  Google Scholar 

  12. Zhang, L., Wei, W., Zhang, Y., Shen, C., van den Hengel, A., Shi, Q.: Dictionary learning for promoting structured sparsity in hyperspectral compressive sensing. IEEE Trans. Geosci. Remote Sens. 54(12), 7223–7235 (2016)

    Article  Google Scholar 

  13. Peng, Y., Meng, D., Xu, Z., Gao, C., Yang, Y., Zhang, B.: Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In: IEEE Conference on CVPR Columbus USA, pp. 2949–2956 (2014)

    Google Scholar 

  14. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  15. Yuhas, R.H., Boardman, J.W., Goetz, A.F.H.: Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques. In: Fourth Annual JPL Airborne Geosci. Workshop Washington, vol. 1. (1993)

    Google Scholar 

Download references

Acknowledgements

This work is carried out as a part of Research work at Nitte Meenakshi Institute of Technology (Visvesvaraya Technological University, Belgaum). We are thankful to the institution for the kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Gunasheela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gunasheela, K.S., Prasantha, H.S. (2019). Compressive Sensing Approach to Satellite Hyperspectral Image Compression. In: Satapathy, S., Joshi, A. (eds) Information and Communication Technology for Intelligent Systems . Smart Innovation, Systems and Technologies, vol 106. Springer, Singapore. https://doi.org/10.1007/978-981-13-1742-2_49

Download citation

Publish with us

Policies and ethics