Keywords

1 Introduction

In current healthcare systems different vital body parameters of patient are to be continuously monitored closely or remotely by experts in the medical field. Previously the process was carried out manually by trained nursing staff. This work was tedious and there were chances of errors due to wrong placement of electrodes, probes, and fatigue. So there was a need of monitoring system which can measure different parameters efficiently and correctly. Wireless sensor network based healthcare systems are grabbing attention in this decade and are currently being applied to improve healthcare around the world [1].

Healthcare monitoring using wireless sensor network is a wireless network based health parameter monitoring system by eliminating use of complex wires and electrodes so that the patients can move around freely without something attached to their body. Many vital body parameters are measured using sensors and send to server via wireless networks for storage and further processing [2]. A small area wireless sensor network (range of 2 m) is used to collect sensor data called as Wireless body area network (WBAN) [3].

2 Literature Survey

WBAN can be used in different ways in many medical applications like

Wearable WBAN

  1. a.

    Assessing Soldier Fatigue and Battle Readiness

  2. b.

    Aiding Professional and Armature Sport Training

  3. c.

    Sleep Staging

  4. d.

    Asthma

  5. e.

    Wearable Health Monitoring.

Implant WBAN

  1. a.

    Cardiovascular Diseases

  2. b.

    Cancer Detection.

Remote Control of Medical Devices

  1. a.

    Ambient-Assisted Living (AAL)

  2. b.

    Patient Monitoring

  3. c.

    Tele-medicine Systems [3].

All healthcare systems which are based on WSN must follow some specific designing requirements like flexibility, miniaturization, portability, non-intrusiveness and low cost [4]. For healthcare applications the system should have some abilities like:

  1. 1.

    Wearability—Ability to wear on body—System must be light in weight [5].

  2. 2.

    Portability—Ability to carry—System must be small in size.

  3. 3.

    Tolerance—Ability to withstand—System must be robust and must consume low power.

  4. 4.

    Affordability—Ability to afford—System should be low in cost and affordable to common people.

  5. 5.

    Compatibility—Ability to be compatible—System must be compatible to standards-based interface protocols for heterogeneous wireless communication in different communication tiers.

  6. 6.

    Integrity—Ability to integrate—System must have simplified integration into different tiers of WBAN and E-health applications.

  7. 7.

    Suitability—Ability to patient—specific calibration—System must be calibrated according to specific thresholds suitable to specific patient [6].

Many researches have worked to design systems for specific applications in healthcare considering different parameters like minimal weight, miniature form factor, low power operation, and patient-specific calibration [7]. Four state of art systems are discussed in Table 1 based on different design parameters.

Table 1 Comparison of three systems based on key designing parameters

Table 1 provides a summary of the HCWSN characteristics used to meet the specific needs. Four state of art previously proposed HCWSNs systems CodeBlue [8, 9], MoteCare [10, 11], AMON [12, 13] and SMART [14], on the basis of key system architecture requirements mentioned, are surveyed.

It is observed that most systems are using wired intra BAN communication and ZigBee or WiFi inter BAN communication [15]. Therefore availability and efficiency is reduced. We are aiming to use wireless sensors in tier-I of our proposed system with existing WiFi communication and Internet facility of hospital will be used for inter BAN and beyond BAN communication. It will greatly help to increase integrity, reliability and affordability of the system.

3 Proposed System

In order to achieve the objectives of the system, the modules of the project are summarized as follow:

  • Sensors: Various bio-sensors are used to acquire medical parameters from patients. More advanced sensors are used for more accurate results.

  • Wireless sensor network is used to transmit and receive sensor data from patient to server. Different communication technologies are compared based on various parameters to select right technology in different communication tiers of WBAN. WiFi is used for tier-1 communication. Arduino boards are used for integrating the system.

  • Monitor at ICU server and main server GUI is used to display and update the parameters of patients in a real time.

  • Alert system Android-based/mobile phone GSM system is used to send alert messages to authorized user.

4 Implementation

  1. Step 1:

    Attach the sensory device to the body of the patient and turn it on.

  2. Step 2:

    The sensors will collect the data and transmit it through EPS8266 EX WiFi module attached on the Arduino Nano board.

  3. Step 3:

    At the receiving end, transmitted data is received on the laptop/PC.

  4. Step 4:

    The received data will be processed and displayed using custom software which is developed on VB6.

  5. Step 5:

    All the parameters viz. body temperature, stress, Heart rate and ECG of the patient would be displayed using specially developed software.

  6. Step 6:

    The processed data will be stored in database for further reference and sent to main server.

  7. Step 7:

    If the received values exceed the medically predefined thresholds, alerts will be sent to corresponding doctors, nurses and relatives.

5 Result Analysis

Implementation of proposed system [15] is done using sensors for vital parameter measurements. Simple Arduino boards like Arduino Uno and Nano were used to transmit data from the sensors and to process received data from the sensors using ZigBee or WiFi as wireless communication. Many revisions in the proposed system design are made to meet requirements of efficient healthcare monitoring system. Two such attempts are compared in Table 2.

Table 2 Comparison of proposed and revised systems

Using the revised system in Fig. 1, we can measure various vital body parameters of the patients inside and outside of the hospital or in home in real time even when patient is roaming around. We used the system to collect actual data of 10 patients. Figure 2 show sample results of temperature and pulse rate and Fig. 3 shows ECG of patient 1.

Fig. 1
figure 1

Proposed System architecture based on WSN

Fig. 2
figure 2

Sample sensor result showing temperature and pulse rate of patient 1

Fig. 3
figure 3

Sample ECG sensor result showing heart rate of patient 1

In the revised system the sensors are connected to Arduino Nano board. As the size of the board and sensors is very small as compared to previous Arduino Uno boards, form factor is considerably reduced. NodeMcu –ESP8266 WiFi Wireless communication is used to make the communication simpler, low cost and energy efficient.

By making above changes

  1. 1.

    As form factor of sensors and board is considerably reduced, therefore size of system is reduced.

  2. 2.

    Communication is WiFi, therefore availability and energy efficiency is increased.

  3. 3.

    Number of sensors are increased therefore complexity of the system is increased.

By revising proposed system many parameters are achieved

  1. 1.

    Wearability—due to miniaturization of components, size of sensors and board is reduced; therefore form factor is considerably reduced.

  2. 2.

    Portability—due to reduced weight and size, system becomes portable.

  3. 3.

    Affordability—components in revised system are cheaper than previous system, so reduced cost

  4. 4.

    Availability—Communication is WiFi, therefore availability is increased.

  5. 5.

    Accuracy—More advanced sensors are used which increases accuracy and precision of data.

  6. 6.

    Integrity—as existing WiFi from home or hospital can be used, integrity is increased.

  7. 7.

    Efficiency—Number of low energy consuming sensors are increased therefore complexity and efficiency of the system is increased.

6 Conclusion

Wireless healthcare monitoring system design proposed here depicts properties like light in weight, miniaturized form factor, low power consumption and patient specific calibration. It is low cost, easy to operate and user friendly system which can measure vital body parameters like temperature, pulse rate, Galvanic skin response, heart rate and ECG successfully. As the size of the board and sensors is very small as compared to previous Arduino Uno boards, form factor is considerably reduced. Low cost NodeMcu—ESP8266 WiFi communication chip is used for wireless communication to make the communication more reliable by increasing its availability. Thus with the use of more advanced and low cost available system components like sensors and boards, our revised system becomes wearable, more cost effective and efficient.

7 Future Scope

In the system implementation, GSR sensor readings are not yet added on monitor. They are to be added later on. Blood pressure sensor and respiration rate sensors with high precision and accuracy are to be added. The existing system is to be extended for more number of sensors and for more number of patients to propose a prototype healthcare system. According to suggestions by doctors, new sensor like one for urine level and saline level detection can be added to the system.