Fall Detection System Based on Mobile Robot

  • Pengfei SunEmail author
  • Anlong Ming
  • Chao Yao
  • Xuejing Kang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 875)


This paper proposed an accurate fall detection algorithm based on the feature of whole human body. The feature is extracted from convolutional neural network. The implementation of algorithm is integrated into a hardware system based on a visual mobile robot platform. To ensure the robustness and flexibility of algorithm in actual situation, a set of systemic strategies was applied on mobile robot. Finally, sufficient experiments on public dataset were conduct on our algorithm. Moreover, in a real indoor scene, experiment results proved the efficiency and precision of the designed fall detection system.


Fall detection Convolutional neural network Mobile robot Deep learning 


  1. 1.
    Antonello, M., Carraro, M., Pierobon, M., Menegatti, E.: Fast and robust detection of fallen people from a mobile robot. arXiv preprint arXiv:1703.03349 (2017)
  2. 2.
    Hsieh, C.Y., Liu, K.C., Huang, C.N., Chu, W.C., Chan, C.T.: Novel hierarchical fall detection algorithm using a multiphase fall model. Sensors 17(2), 307 (2017)CrossRefGoogle Scholar
  3. 3.
    Kwolek, B., Kepski, M.: Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168, 637–645 (2015)CrossRefGoogle Scholar
  4. 4.
    Li, Q., Stankovic, J.A., Hanson, M.A., Barth, A.T., Lach, J., Zhou, G.: Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. In: 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks. BSN 2009, pp. 138–143. IEEE (2009)Google Scholar
  5. 5.
    Liu, C.L., Lee, C.H., Lin, P.M.: A fall detection system using k -nearest neighbor classifier. Expert Syst. Appl. 37(10), 7174–7181 (2010)CrossRefGoogle Scholar
  6. 6.
    Lord, S.R., Sherrington, C., Menz, H.B., Close, J.C.: Falls in Older People: Risk Factors and Strategies for Prevention. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  7. 7.
    Matsuo, K., Aoki, Y.: Depth image enhancement using local tangent plane approximations, pp. 3574–3583, June 2015Google Scholar
  8. 8.
    Mundher, Z.A., Zhong, J.: A real-time fall detection system in elderly care using mobile robot and kinect sensor. Int. J. Mater. Mech. Manuf. 2(2), 133–138 (2014)Google Scholar
  9. 9.
    Ren, Y., Li, S., Chen, C., Kuo, C.-C.J.: A coarse-to-fine indoor layout estimation (CFILE) method. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 36–51. Springer, Cham (2017). Scholar
  10. 10.
    Volkhardt, M., Schneemann, F., Gross, H.M.: Fallen person detection for mobile robots using 3D depth data. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3573–3578. IEEE (2013)Google Scholar
  11. 11.
    Wang, S., Zabir, S., Leibe, B.: Lying pose recognition for elderly fall detection. Robotics: Science and Systems VII 345 (2012)Google Scholar
  12. 12.
    Williams, A., Ganesan, D., Hanson, A.: Aging in place: fall detection and localization in a distributed smart camera network. In: Proceedings of the 15th ACM international conference on Multimedia, pp. 892–901. ACM (2007)Google Scholar
  13. 13.
    Xiao, J., Xie, Y., Tillo, T., Huang, K., Wei, Y., Feng, J.: IAN: the individual aggregation network for person search (2017)Google Scholar
  14. 14.
    Zerrouki, N., Harrou, F., Houacine, A., Sun, Y.: Fall detection using supervised machine learning algorithms: a comparative study. In: International Conference on Modelling, Identification and Control, pp. 665–670 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pengfei Sun
    • 1
    Email author
  • Anlong Ming
    • 1
  • Chao Yao
    • 1
  • Xuejing Kang
    • 1
  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations