Skip to main content

Reservoir Computing with Dipole-Coupled Nanomagnets

  • Chapter
  • First Online:
Reservoir Computing

Part of the book series: Natural Computing Series ((NCS))

Abstract

An idea to use a magnetic nano-dots array for a reservoir computing is introduced. The mechanism of how the nonlinear calculation is carried out in the magnetic system is explained by showing the simplest case with three nano-dots system. The first trial to prove calculation ability and fabrication ability of the system is demonstrated. Since the proposed reservoir computing system may utilize integration technology of the magnetic random access memory (MRAM), it possesses a possibility to realize a large-scale reservoir computing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  • D.J. Amit, H. Gutfreund, Spin-glass models of neural networks. Phys. Rev. A 32(2), 1007–1018 (1985)

    Article  MathSciNet  Google Scholar 

  • L. Appeltant et al., Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Article  Google Scholar 

  • A.F. Atiya, A.G. Parlos, New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000)

    Article  Google Scholar 

  • S. Bhatti et al., Spintronics based random access memory: a review. Mater. Today 20(9), 530–548 (2017)

    Article  Google Scholar 

  • R.P. Cowburn, M.E. Welland, Room temperature magnetic quantum cellular automata. Science 287(5457), 1466–1468 (2000)

    Article  Google Scholar 

  • N. Hikaru, N. Ryoichi, NAND/NOR logical operation of a magnetic logic gate with canted clock-field. Appl. Phys. Express 4(1), (2011)

    Article  Google Scholar 

  • N. Hikaru et al., Controlling operation timing and data flow direction between nanomagnet logic elements with spatially uniform clock fields. Appl. Phys. Express 10(12), (2017)

    Article  Google Scholar 

  • J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA-Biol. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  • A. Imre et al., Majority logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  • H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  • J.H. Jensen, E. Folven, G. Tufte, Computation in artificial spin ice, in The 2018 Conference on Artificial Life: A Hybrid of the European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and Simulation of Living Systems (ALIFE) (2018), pp. 15–22

    Google Scholar 

  • T. Maruyama et al., Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4(3), 158–161 (2009)

    Article  Google Scholar 

  • E.B. Myers et al., Current-induced switching of domains in magnetic multilayer devices. Science 285(5429), 867–870 (1999)

    Article  Google Scholar 

  • K. Nakajima et al., Information processing via physical soft body. Sci. Rep. 5, 10487 (2015)

    Article  Google Scholar 

  • H. Nomura et al., Reservoir computing with dipole-coupled nanomagnets (2018), arXiv:1810.13140

  • A. Orlov et al., Magnetic quantum-dot cellular automata: recent developments and prospects. J. Nanoelectron. Optoelectron. 3, 1–14 (2008)

    Article  Google Scholar 

  • S.S.P. Parkin et al., Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(12), 862–867 (2004)

    Article  Google Scholar 

  • S. Yuasa et al., Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868–871 (2004)

    Article  Google Scholar 

  • L. Zhu et al., Remarkable problem-solving ability of unicellular amoeboid organism and its mechanism. R. Soc. Open Sci. 5(12) (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Internal Affairs and Communications, JAPAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshishige Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nomura, H., Kubota, H., Suzuki, Y. (2021). Reservoir Computing with Dipole-Coupled Nanomagnets. In: Nakajima, K., Fischer, I. (eds) Reservoir Computing. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-13-1687-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1687-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1686-9

  • Online ISBN: 978-981-13-1687-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics