Skip to main content

Programmable Fading Memory in Atomic Switch Systems for Error Checking Applications

  • Chapter
  • First Online:
Reservoir Computing

Part of the book series: Natural Computing Series ((NCS))

Abstract

Disruptive technology in computational devices is required as the universal computing machines approach quantum mechanical limits. Integration of state-of-the-art memristive devices provides optimal scaling of current technologies beyond this limit through the adoption of neuromorphic models. Universal computing machines pioneered by Alan Turing are strictly based on top-down intelligent design. Neuromorphic models instead engage in bottom-up programmability by emulating mammalian brain design and characteristics. Here we show the design, characterization, and implementation of a massively parallel memristor neuromorphic network based on metal chalcogenide atomic switch network (ASN) systems with key characteristics such as short- and long-term potentiation, power-law dynamics, and scale-free topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E. Abbe, Contributions to the Theory of the Microscope and the Microscopic Perception (Springer, 1873)

    Google Scholar 

  • A. Abraham, Artificial neural networks, in Handbook of Measuring System Design, ed. by P.H. Sydenham, R. Thorn (Wiley, 2005)

    Google Scholar 

  • N. Aramaki, Y. Shimokawa, Y. Fuwa, A parallel ASIC VLSI neurocomputer for a large number of neurons and billion connections per second speed, in IEEE International Joint Conference on Neural Networks (Singapore, 1991)

    Google Scholar 

  • A. Ascoli, R. Tetzlaff, L.O. Chua, Continuous and Differentiable Approximation of a TaO Memristor Model for Robust Numerical Simulations. Springer Proceedings in Physics (2017)

    Google Scholar 

  • R.C. Atkinson, R.M. Shiffrin, Human memory: a proposed system and its control processes. Psychol. Learn. Motiv. 2, 89–195 (1968)

    Google Scholar 

  • A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, H.H. Shieh, M. Aono, A.Z. Stieg, J.K. Gimzewski, Neuromorphic atomic switch networks. PLoS ONE 7(8), e42772 (2012a)

    Google Scholar 

  • A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, H.H. Shieh, M. Aono, A.Z. Stieg, J.K. Gimzewski, Neuromorphic atomic switch networks. PloS One 7, e42772 (2012b)

    Google Scholar 

  • A.V. Avizienis, C.M.-O. Henry, O. Sillin, M. Aono, J.K. Gimzewski, A.Z. Stieg, Morphological transitions from dendrites to nanowires in the electroless deposition of silver. Cryst. Growth Des. 13 (2013)

    Google Scholar 

  • J.W. Backus, Can programming be liberated from the von Neumann style? A functional style and its algebra of programs. Commun. ACM 21 (1978)

    Google Scholar 

  • Z. Biolek, D. Biolek, V. Biolkova, SPICE model of memristor with nonlinear dopant drift. Radioengineering 18 (2009)

    Google Scholar 

  • L. Büsing, B. Schrauwen, R. Legenstein, Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput. 22, 1272–1311 (2010)

    Google Scholar 

  • J.P. Carbajal, J. Dambre, M. Hermans, B. Schrauwen, Memristor models for machine learning. Neural Comput. 27, 725–747 (2015)

    Google Scholar 

  • G. Chen, X.F. Wang, Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 3, 6–20 (2003)

    Google Scholar 

  • L.O. Chua, Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. 27 (1980)

    Google Scholar 

  • L.O. Chua, M.P. Kennedy, Neural networks for nonlinear programming. IEEE Trans. Circuits Syst. 35 (1988)

    Google Scholar 

  • L.O. Chua, C.W. Wu, Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits Syst.-I Fundam. Theory Appl. 42 (1995)

    Google Scholar 

  • L.O. Chua, M. Itoh, Memristor oscillators. Int. J. Bifurc. Chaos 18 (2008)

    Google Scholar 

  • L.O. Chua, C.W. Wu, A. Huang, G.-Q. Zhong, A universal circuit for studying and generating chaos-Part I: routes to chaos. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 40 (1993)

    Google Scholar 

  • E.C. Demis, R. Aguilera, H.O. Sillin, K. Scharnhorst, E.J. Sandouk, M. Aono, A.Z. Stieg, J.K. Gimzewski, Atomic switch networks nanoarchitectonic design of a complex system for natural computing. Nanotechnology 26 (2015)

    Google Scholar 

  • E.C. Demis, R. Aguilera, K. Scharnhorst, M. Aono, A.Z. Stieg, J.K. Gimzewski, Nanoarchitectonic atomic switch networks for unconventional computing. Jpn. J. Appl. Phys. 55 (2016)

    Google Scholar 

  • C. Du, F. Cai, M.A. Zidan, W. Ma, S.H. Lee, W.D. Lu, Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8 (2017)

    Google Scholar 

  • T. Furuta, K. Fujii, K. Nakajima, S. Tsunegi, H. Kubota, Y. Suzuki, S. Miwa, Macromagnetic simulation for reservoir computing utilizing spin dynamics in magnetic tunnel junctions. Phys. Rev. Appl. 10, 034063 (2018)

    Google Scholar 

  • A. Graves, A.M. Mohamed, G. Hinton, Speech Recognition with Deep Recurrent Neural Netw. (2013)

    Google Scholar 

  • A. Goudarzi, C.T. N. Gulbahce, T. Rohlf, Emergent criticality through adaptive information processing in Boolean networks. Phys. Rev. Lett. 108 (2012)

    Google Scholar 

  • A.I. Gusev, S.I. Sadovnikov, Effect of small size of particles on thermal expansion and heat capacity of Ag2S silver sulfide. Thermochim. Acta 660 (2018)

    Google Scholar 

  • A. Haimovici, E.T. Pablo Balenzuela, D.R. Chialvo, Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110 (2013)

    Google Scholar 

  • T. Hasegawa, A. Nayak, T. Ohno, K. Terabe, T. Tsuruoka, J.K. Gimzewski, M. Aono, Memristive operations demonstrated by gap-type atomic switches. Appl. Phys. A 102, 811–815 (2011)

    Google Scholar 

  • M.H. Hassoun, Fundamentals of Artificial Neural Networks (MIT Press, 1995)

    Google Scholar 

  • D.O. Hebb, Organization of Behavior (Wiley, New York, 1950)

    Google Scholar 

  • M. Hermans, M. Burm, T. Van Vaerenbergh, J. Dambre, P. Bienstman, Trainable hardware for dynamical computing using error backpropagation through physical media. Nat. Commun. 6 (2015)

    Google Scholar 

  • J.J. Hopfield, Artificial neural networks. IEEE Circuits Devices Mag. 4, 3–10 (1988)

    Article  Google Scholar 

  • C.P. Husband, S.M. Husband, J.S. Daniels, J.M. Tour, Logic and memory with nanocell circuits. IEEE Trans. Electron Devices 50 (2003)

    Google Scholar 

  • H. Jaeger, The ``echo state’’ approach to analysing and training recurrent neural networks - with an Erratum note. GMD Report 148. German National Research Center for Information Technology (2001)

    Google Scholar 

  • J. Joshua Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Google Scholar 

  • J.-H. Kim, K.-H. Han, Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6, 580–593 (2002)

    Google Scholar 

  • A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. (2012)

    Google Scholar 

  • Lang, (1986) https://doi.org/10.1063/1.97114

  • J.S. Langer, Instabilities and pattern formation in crystal growth. Rev Mod Phys. 52 (1980)

    Google Scholar 

  • C.G. Langton, Computation at the edge of chaos: phase transitions and emergent computation. Phys. D 42, 12–37 (1990)

    Google Scholar 

  • M. Lukoševičius, H. Jaeger, Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009)

    Google Scholar 

  • W. Maass, R. Legenstein, What makes a dynamical system computationally powerful? in New Directions in Statistical Signal Processing: From Systems to Brain, ed. by P. Haykin, T.J. Sejnowski, J. Mcwhirter (2005)

    Google Scholar 

  • W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002)

    Google Scholar 

  • C. Mead, Neuromorphic electronic systems, in IEEE (IEEE, 1990)

    Google Scholar 

  • Möller, (1987) https://doi.org/10.1103/PhysRevB.36.1284

  • T. Natschläger, N. Bertschinger, Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16 (2004)

    Google Scholar 

  • NEC, NEC integrates NanoBridge in the Cu interconnects of Si LSI (2009), https://phys.org/news/2009-12-nec-nanobridge-cu-interconnects-si.html

  • E. Nedaaee Oskoee, M. Sahimi, Electric currents in networks of interconnected memristors. Phys. Rev. E 83 (2011)

    Google Scholar 

  • L.F. Nelson, S.B. Abbott, Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178 (2000)

    Google Scholar 

  • T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011)

    Google Scholar 

  • A. Romero, P.L. Carrier, A. Erraqabi, T. Sylvain, A. Auvolat, E. Dejoie, M.-A. Legault, M.-P. Dubé, J.G. Hussin, Y. Bengio, Diet networks: thin parameters for fat genomics (2017)

    Google Scholar 

  • B. Schrauwen, D. Verstraeten, J. Van Campenhout, An overview of reservoir computing: theory, applications and implementations, in 15th European Symposium on Artificial Neural Networks (2007), pp. 471–482

    Google Scholar 

  • D. Sellers, An overview of proportional plus integral plus derivative control and suggestions for its successful application and implementation (2007), https://web.archive.org/web/20070307161741/http://www.peci.org/library/PECI_ControlOverview1_1002.pdf

    Google Scholar 

  • H.O. Sillin, R. Aguilera, H.-H. Shieh, A.V. Avizienis, M. Aono, A.Z. Stieg, J.K. Gimzewski, A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24, 384004 (2013)

    Google Scholar 

  • O. Sporns, Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems 85, 55–64 (2006)

    Article  Google Scholar 

  • A.Z. Stieg, A.V. Avizienis, H.O. Sillin, C. Martin-Olmos, M. Aono, J.K. Gimzewski, Emergent criticality in complex Turing B-type atomic switch networks. Adv. Mater. 24, 286–293 (2012)

    Article  Google Scholar 

  • D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Google Scholar 

  • D. Sussillo, L.F. Abbott, Generating coherent patterns of activity from chaotic neural networks. Neuron 63 (2009)

    Google Scholar 

  • K. Terabe, T. Nakayama, T. Hasegawa, M. Aono, Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction. J. Appl. Phys. 91, 10110–10114 (2002)

    Google Scholar 

  • Y. Timofeeva, S. Coombes, Sparks and waves in a stochastic fire-diffuse-fire model of Ca2 release. Phys. Rev. E 68 (2003)

    Google Scholar 

  • J.M. Tour, L. Cheng, D.P. Nackashi, Y. Yao, A.K. Flatt, S.K. St. Angelo, T.E. Mallouk, P.D. Franzon, NanoCell electronic memories. J. Am. Chem. Soc. 125, 13279–13283 (2003)

    Google Scholar 

  • T. Tsuchiya, M. Ochi, T. Higuchi, K. Terabe, M. Aono, Effect of ionic conductivity on response speed of SrTiO3‑based allsolid-state electric-double-layer transistor. ACS Appl. Mater. Interfaces 7 (2015)

    Google Scholar 

  • T. Tsuruoka, T. Hasegawa, K. Terabe, M. Aono, Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer. J. Electroceram. 39 (2017)

    Google Scholar 

  • A.M. Turing, Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  • H. van Houten, C. Beenakker, Quantum point contacts. Phys. Today 49 (1996)

    Google Scholar 

  • D. Verstraeten, Reservoir computing: computation with dynamical systems. PhD thesis, Ghent University (2009)

    Google Scholar 

  • M.M. Waldrop, The chips are down for Moore’s law. Nature 530, 144–147 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Gimzewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilera, R., Sillin, H.O., Stieg, A.Z., Gimzewski, J.K. (2021). Programmable Fading Memory in Atomic Switch Systems for Error Checking Applications. In: Nakajima, K., Fischer, I. (eds) Reservoir Computing. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-13-1687-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1687-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1686-9

  • Online ISBN: 978-981-13-1687-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics