Abstract
We present some recent results and propose a list of questions on the weighted log canonical threshold and the weighted multiplier ideal sheaf. This survey is dedicated to Prof. Kang-Tae Kim on the Occasion of His 60th Birthday.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berndtsson, B.: The openness conjecture and complex Brunn-Minkowski inequalities. Comp. Geom. Dyn. 10, 29–44 (2015)
De Fernex, T., Ein, L., Mustata, M.: Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties. Duke Math. J. 152, 93–114 (2010)
Demailly, J.-P.: Monge-Ampère operators, Lelong numbers and intersection theory. In: Ancona, V., Silva, A. (eds.) Complex Analysis and Geometry, University Series in Math. Plenum Press, New-York (1993)
Demailly, J.-P.: A numerical criterion for very ample line bundles. J. Diff. Geom. 37, 323–374 (1993)
Demailly, J.-P., Hiep, Pham Hoang: A sharp lower bound for the log canonical threshold. Acta Math. 212, 1–9 (2014)
Demailly, J.-P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. Ecole Norm. Sup. 34, 525–556 (2001)
Favre, C., Jonsson, M.: Valuations and multiplier ideals. J. Am. Math. Soc. 18, 655–684 (2005)
Guan, Q.A., Zhou, X.Y.: Effectiveness of Demaillys strong openness conjecture and related problems. Invent. Math. 202(2), 635–676 (2015)
Guan, Q.A., Zhou, X.Y.: A proof of Demailly’s strong openness conjecture. Ann. Math. 182, 605–616 (2015)
Hacon, C., McKernan, J., Xu, C.: ACC for log canonical thresholds. Ann. Math. 180, 523–571 (2014)
Hiep, P.H.: Continuity properties of certain weighted log canonical thresholds. C. R. Acad. Sci. Paris. 355, 34–39 (2017)
Hiep, P.H.: The weighted log canonical threshold. C. R. Acad. Sci. Paris 352, 283–288 (2014)
Kiselman, C.O.: Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math. 60, 173–197 (1994)
Kollár, J. (with 14 coauthors): Flips and abundance for algebraic threefolds, Astérisque No. 211, 1992
Nadel, A.M.: Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature. Ann. Math. 132, 549–596 (1990)
Ohsawa, T., Takegoshi, K.: On the extension of \(L^2\) holomorphic functions. Math. Z. 195, 197–204 (1987)
Phong, D.H., Sturm, J.: Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions. Ann. Math. 152, 277–329 (2000)
Shokurov, V.V.: Three-dimensional log perestroikas. Izv. Ross. Akad. Nauk Ser. Mat. 56(1), 105–203 (1992)
Skoda, H.: Sous-ensembles analytiques d’ordre fini ou infini dans \(\mathbb{C}^n\). Bull. Soc. Math. Fr. 100, 353–408 (1972)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Hoang Hiep, P. (2018). A Survey on the Weighted Log Canonical Threshold and the Weighted Multiplier Ideal Sheaf. In: Byun, J., Cho, H., Kim, S., Lee, KH., Park, JD. (eds) Geometric Complex Analysis. Springer Proceedings in Mathematics & Statistics, vol 246. Springer, Singapore. https://doi.org/10.1007/978-981-13-1672-2_13
Download citation
DOI: https://doi.org/10.1007/978-981-13-1672-2_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1671-5
Online ISBN: 978-981-13-1672-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)