Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 431 Accesses

Abstract

Vibrational spectroscopy has long been employed to characterize the intramolecular and intermolecular interactions of water, providing a sensitive probe for nuclear quantum effects (NQEs) of protons in energy space through isotope substitution experiments. In this chapter, we show the possibility of pushing the limit of vibrational spectroscopy of water down to the single-bond level using a novel technique called tip-enhanced (IETS) based on STM. This is achieved by gating the frontier orbitals of water towards the Fermi level with a chlorine-terminated STM tip to resonantly enhance the electron-vibration coupling. The signal-to-noise ratios of the tip-enhanced IETS are enhanced by orders of magnitude over the conventional STM-IETS, which is crucial for precisely determining the H-bonding strength and subsequently probing the NQEs of protons in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huisken F, Kaloudis M, Kulcke A (1996) Infrared spectroscopy of small size-selected water clusters. J Chem Phys 104:17–25

    Article  ADS  Google Scholar 

  2. Buck U, Huisken F (2000) Infrared spectroscopy of size-selected water and methanol clusters. Chem Rev 100:3863–3890

    Article  Google Scholar 

  3. Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301:1698–1702

    Article  ADS  Google Scholar 

  4. Bakker HJ, Skinner JL (2010) Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem Rev 110:1498–1517

    Article  Google Scholar 

  5. Bensebaa F, Ellis TH (1995) Water at surfaces: what can we learn from vibrational spectroscopy? Prog Surf Sci 50:173–185

    Article  ADS  Google Scholar 

  6. Du Q, Superfine R, Freysz E, Shen YR (1993) Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett 70:2313–2316

    Article  ADS  Google Scholar 

  7. Shen YR, Ostroverkhov V (2006) Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem Rev 106:1140–1154

    Article  Google Scholar 

  8. Kim Y, Motobayashi K, Frederiksen T, Ueba H, Kawai M (2015) Action spectroscopy for single-molecule reactions—Experiments and theory. Prog Surf Sci 90:85–143

    Article  ADS  Google Scholar 

  9. Hirsch K, Holzapfel W (1986) Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X. J Chem Phys 84:2771–2775

    Article  ADS  Google Scholar 

  10. Goncharov AF, Struzhkin VV, Mao HK, Hemley RJ (1999) Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys Rev Lett 83:1998–2001

    Article  ADS  Google Scholar 

  11. Nagata Y, Pool RE, Backus EHG, Bonn M (2012) Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett 109:226101

    Article  ADS  Google Scholar 

  12. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280:1732–1735

    Article  ADS  Google Scholar 

  13. Ho W (2002) Single-molecule chemistry. J Chem Phys 117:11033–11061

    Article  ADS  Google Scholar 

  14. Komeda T (2005) Chemical identification and manipulation of molecules by vibrational excitation via inelastic tunneling process with scanning tunneling microscopy. Prog Surf Sci 78:41–85

    Article  ADS  Google Scholar 

  15. Galperin M, Ratner MA, Nitzan A (2007) Molecular transport junctions: vibrational effects. J Phys: Condens Matter 19:103201

    ADS  Google Scholar 

  16. Lorente N, Persson M (2000) Theory of single molecule vibrational spectroscopy and microscopy. Phys Rev Lett 85:2997–3000

    Article  ADS  Google Scholar 

  17. Galperin M, Ratner MA, Nitzan A, Troisi A (2008) Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science 319:1056–1060

    Article  ADS  Google Scholar 

  18. Morgenstern K, Nieminen J (2002) Intermolecular bond length of ice on Ag(111). Phys Rev Lett 88:066102

    Article  ADS  Google Scholar 

  19. Kumagai T et al (2009) Tunneling dynamics of a hydroxyl group adsorbed on Cu(110). Phys Rev B 79:035423

    Article  ADS  Google Scholar 

  20. Okuyama H, Hamada I (2011) Hydrogen-bond imaging and engineering with a scanning tunnelling microscope. J Phys D Appl Phys 44:464004

    Article  ADS  Google Scholar 

  21. Kumagai T (2015) Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy. Prog Surf Sci 90:239–291

    Article  ADS  Google Scholar 

  22. Persson BNJ, Baratoff A (1987) Inelastic electon tunneling from a metal tip: the contribution from resonant processes. Phys Rev Lett 59:339–342

    Article  ADS  Google Scholar 

  23. Galperin M, Nitzan A, Ratner MA (2006) Resonant inelastic tunneling in molecular junctions. Phys Rev B 73:045314

    Article  ADS  Google Scholar 

  24. Song H et al (2009) Observation of molecular orbital gating. Nature 462:1039–1043

    Article  ADS  Google Scholar 

  25. Guo J et al (2016) Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 352:321–325

    Article  ADS  Google Scholar 

  26. Lü JT et al (2014) Efficient calculation of inelastic vibration signals in electron transport: beyond the wide-band approximation. Phys Rev B 89:081405

    Article  ADS  Google Scholar 

  27. Soler JM et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  ADS  Google Scholar 

  28. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401

    Article  ADS  Google Scholar 

  29. Frederiksen T, Paulsson M, Brandbyge M, Jauho A-P (2007) Inelastic transport theory from first principles: methodology and application to nanoscale devices. Phys Rev B 75:205413

    Article  ADS  Google Scholar 

  30. Guo J et al (2014) Real-space imaging of interfacial water with submolecular resolution. Nat Mater 13:184–189

    Article  ADS  Google Scholar 

  31. Lorente N, Persson M, Lauhon LJ, Ho W (2001) Symmetry selection rules for vibrationally inelastic tunneling. Phys Rev Lett 86:2593–2596

    Article  ADS  Google Scholar 

  32. Ohara M, Kim Y, Yanagisawa S, Morikawa Y, Kawai M (2008) Role of molecular orbitals near the Fermi level in the excitation of vibrational modes of a single molecule at a scanning tunneling microscope junction. Phys Rev Lett 100:136104

    Article  ADS  Google Scholar 

  33. Galperin M, Ratner MA, Nitzan A (2004) Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. J Chem Phys 121:11965–11979

    Article  ADS  Google Scholar 

  34. Baratoff A, Persson BNJ (1988) Theory of the local tunneling spectrum of a vibrating adsorbate. J Vac Sci Technol, A 6:331–335

    Article  ADS  Google Scholar 

  35. Rozenberg M, Loewenschuss A, Marcus Y (2000) An empirical correlation between stretching vibration redshift and hydrogen bond length. Phys Chem Chem Phys 2:2699–2702

    Article  Google Scholar 

  36. Stipe BC, Rezaei HA, Ho W (1999) Localization of inelastic tunneling and the determination of atomic-scale structure with chemical specificity. Phys Rev Lett 82:1724–1727

    Article  ADS  Google Scholar 

  37. Stipe BC, Rezaei MA, Ho W (1998) Inducing and viewing the rotational motion of a single molecule. Science 279:1907–1909

    Article  ADS  Google Scholar 

  38. Stipe BC et al (1997) Single-molecule dissociation by tunneling electrons. Phys Rev Lett 78:4410–4413

    Article  ADS  Google Scholar 

  39. Kawai M, Komeda T, Kim Y, Sainoo Y, Katano S (2004) Single-molecule reactions and spectroscopy via vibrational excitation. Phil Trans R Soc Lond A 362:1163–1171

    Article  ADS  Google Scholar 

  40. Kim Y, Komeda T, Kawai M (2002) Single-molecule reaction and characterization by vibrational excitation. Phys Rev Lett 89:126104

    Article  ADS  Google Scholar 

  41. Sainoo Y et al (2005) Excitation of molecular vibrational modes with inelastic scanning tunneling microscopy processes: examination through action spectra of cis-2-butene on Pd(110). Phys Rev Lett 95:246102

    Article  ADS  Google Scholar 

  42. Lauhon LJ, Ho W (2000) Electronic and vibrational excitation of single molecules with a scanning tunneling microscope. Surf Sci 451:219–225

    Article  ADS  Google Scholar 

  43. Motobayashi K, Matsumoto C, Kim Y, Kawai M (2008) Vibrational study of water dimers on Pt(111) using a scanning tunneling microscope. Surf Sci 602:3136–3139

    Article  ADS  Google Scholar 

  44. Kumagai T et al (2013) Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys Rev Lett 111:246101

    Article  ADS  Google Scholar 

  45. Paulsson M, Frederiksen T, Ueba H, Lorente N, Brandbyge M (2008) Unified description of inelastic propensity rules for electron transport through nanoscale junctions. Phys Rev Lett 100:226604

    Article  ADS  Google Scholar 

  46. Frederiksen T, Paulsson M, Ueba H (2014) Theory of action spectroscopy for single-molecule reactions induced by vibrational excitations with STM. Phys Rev B 89:201302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J. (2018). Single Molecule Vibrational Spectroscopy of Interfacial Water. In: High Resolution Imaging, Spectroscopy and Nuclear Quantum Effects of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1663-0_4

Download citation

Publish with us

Policies and ethics