Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 438 Accesses

Abstract

In this chapter, we report the submolecular-resolution imaging of water molecules adsorbed on a Au-supported NaCl(001) film with STM and nc-AFM. In the STM experiments, we first decouple electronically the water molecule from the metal substrate by inserting an insulating NaCl layer and then employed the STM tip as a top gate to tune controllably the molecular density of states of water around the Fermi level (EF). These key steps enable the direct visualizing of frontier molecular orbitals of adsorbed water, which allows discriminating the orientation of the monomers, the H-bond directionality of the tetramers in real space and characterization of H-bonded water clusters and overlayers on NaCl(001) film. In addition, we also achieve the submolecular-resolution imaging of water nanoclusters on the NaCl(001) film by probing the high-order electrostatic force using a qPlus-based nc-AFM with a CO-terminated tip. The non-invasive AFM imaging technique may open a new avenue of studying the intrinsic structure and dynamics of ice or water on surfaces, ion hydration and biological water with atomic precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7:211–385

    Article  ADS  Google Scholar 

  2. Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308

    Article  ADS  Google Scholar 

  3. Verdaguer A, Sacha GM, Bluhm H, Salmeron M (2006) Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem Rev 106:1478–1510

    Article  Google Scholar 

  4. Hodgson A, Haq S (2009) Water adsorption and the wetting of metal surfaces. Surf Sci Rep 64:381–451

    Article  ADS  Google Scholar 

  5. Zou Z, Ye J, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  ADS  Google Scholar 

  6. Akiya N, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102:2725–2750

    Article  Google Scholar 

  7. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  8. Eisenberg DS, Kauzmann W (1969) The structure and properties of water. Clarendon P., Oxford

    Google Scholar 

  9. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–1114

    Article  ADS  Google Scholar 

  10. Albrecht F, Neu M, Quest C, Swart I, Repp J (2013) Formation and characterization of a molecule-metal-molecule bridge in real space. J Am Chem Soc 135:9200–9203

    Article  Google Scholar 

  11. Zhang J et al (2013) Real-space identification of intermolecular bonding with atomic force microscopy. Science 342:611–614

    Article  ADS  Google Scholar 

  12. Kawai S et al (2016) Van der Waals interactions and the limits of isolated atom models at interfaces. Nat Commun 7:11559

    Article  ADS  Google Scholar 

  13. Hämäläinen SK et al (2014) Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys Rev Lett 113:186102

    Article  ADS  Google Scholar 

  14. Guo J et al (2014) Real-space imaging of interfacial water with submolecular resolution. Nat Mater 13:184–189

    Article  ADS  Google Scholar 

  15. Peng JB et al (2018) Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat Commun 9:112

    Article  ADS  Google Scholar 

  16. Chen J et al (2014) An unconventional bilayer ice structure on a NaCl(001) film. Nat Commun 5:4056

    Article  Google Scholar 

  17. Meng X et al (2015) Direct visualization of concerted proton tunnelling in a water nanocluster. Nat Phys 11:235–239

    Article  Google Scholar 

  18. Horcas I et al (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  ADS  Google Scholar 

  19. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  ADS  Google Scholar 

  20. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  ADS  Google Scholar 

  21. Klimes J, Bowler DR, Michaelides A (2011) Van der Waals density functionals applied to solids. Phys Rev B 83:195131

    Article  ADS  Google Scholar 

  22. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  ADS  Google Scholar 

  23. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  ADS  Google Scholar 

  24. Hapala P et al (2014) Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys Rev B 90:085421

    Article  ADS  Google Scholar 

  25. Hapala P, Temirov R, Tautz FS, Jelinek P (2014) Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys Rev Lett 113:226101

    Article  ADS  Google Scholar 

  26. Hebenstreit W et al (1999) Atomic resolution by STM on ultra-thin films of alkali halides: experiment and local density calculations. Surf Sci 424:L321–L328

    Article  Google Scholar 

  27. Michaelides A, Ranea VA, de Andres PL, King DA (2003) General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys Rev Lett 90:216102

    Article  ADS  Google Scholar 

  28. Cabrera-Sanfelix P, Arnau A, Darling GR, Sanchez-Portal D (2006) Water adsorption and diffusion on NaCl(100). J Phys Chem B 110:24559–24564

    Article  Google Scholar 

  29. Yang Y, Meng S, Wang EG (2006) Water adsorption on a NaCl (001) surface: a density functional theory study. Phys Rev B 74:245409

    Article  ADS  Google Scholar 

  30. Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett 94:026803

    Article  ADS  Google Scholar 

  31. Ho W (2002) Single-molecule chemistry. J Chem Phys 117:11033–11061

    Article  ADS  Google Scholar 

  32. Kumagai T (2015) Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy. Prog Surf Sci 90:239–291

    Article  ADS  Google Scholar 

  33. Norskov JK (1990) Chemisorption on metal surfaces. Rep Prog Phys 53:1253–1295

    Article  ADS  Google Scholar 

  34. Martinez JI, Abad E, Gonzalez C, Flores F, Ortega J (2012) Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys Rev Lett 108:246102

    Article  ADS  Google Scholar 

  35. Lawton TJ, Carrasco J, Baber AE, Michaelides A, Sykes ECH (2011) Visualization of hydrogen bonding and associated chirality in methanol hexamers. Phys Rev Lett 107:256101

    Article  ADS  Google Scholar 

  36. Bjerrum N (1952) Structure and properties of ice. Science 115:385–390

    Article  ADS  Google Scholar 

  37. Forster M, Raval R, Hodgson A, Carrasco J, Michaelides A (2011) c(2 × 2) Water-hydroxyl layer on Cu(110): a wetting layer stabilized by Bjerrum defects. Phys Rev Lett 106:046103

    Article  ADS  Google Scholar 

  38. Shiotari A, Sugimoto Y (2017) Ultrahigh-resolution imaging of water networks by atomic force microscopy. Nat Commun 8:14313

    Article  ADS  Google Scholar 

  39. Cabrera-Sanfelix P et al (2007) Spontaneous emergence of Cl− anions from NaCl(100) at low relative humidity. J Phys Chem C 111:8000–8004

    Article  Google Scholar 

  40. Klimes J, Bowler DR, Michaelides A (2013) Understanding the role of ions and water molecules in the NaCl dissolution process. J Chem Phys 139:234702

    Article  ADS  Google Scholar 

  41. Liu L-M, Laio A, Michaelides A (2011) Initial stages of salt crystal dissolution determined with ab initio molecular dynamics. Phys Chem Chem Phys 13:13162–13166

    Article  Google Scholar 

  42. Algara-Siller G et al (2015) Square ice in graphene nanocapillaries. Nature 519:443–445

    Article  ADS  Google Scholar 

  43. Bernal JD, Fowler RH (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys 1:515–548

    Article  ADS  Google Scholar 

  44. Xu K, Cao P, Heath JR (2010) Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329:1188–1191

    Article  ADS  Google Scholar 

  45. Fukuma T, Ueda Y, Yoshioka S, Asakawa H (2010) Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys Rev Lett 104:016101

    Article  ADS  Google Scholar 

  46. Songen H et al (2018) Resolving point defects in the hydration structure of calcite (10.4) with three-dimensional atomic force microscopy. Phys Rev Lett 120:116101

    Article  ADS  Google Scholar 

  47. Thurmer K, Nie S (2013) Formation of hexagonal and cubic ice during low-temperature growth. Proc Natl Acad Sci U S A 110:11757–11762

    Article  ADS  Google Scholar 

  48. Gross L et al (2010) Organic structure determination using atomic-resolution scanning probe microscopy. Nat Chem 2:821–825

    Article  Google Scholar 

  49. Moll N, Gross L, Mohn F, Curioni A, Meyer G (2010) The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J Phys 12:125020

    Article  Google Scholar 

  50. Hapala P et al (2016) Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat Commun 7:11560

    Article  ADS  Google Scholar 

  51. Ellner M et al (2016) The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett 16:1974–1980

    Article  ADS  Google Scholar 

  52. Chiang C-l XuC, Han Z, Ho W (2014) Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344:885–888

    Article  ADS  Google Scholar 

  53. Guo J et al (2016) Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 352:321–325

    Article  ADS  Google Scholar 

  54. Giessibl FJ (2001) A direct method to calculate tip-sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl Phys Lett 78:123–125

    Article  ADS  Google Scholar 

  55. Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom on a surface. Science 319:1066–1069

    Article  ADS  Google Scholar 

  56. Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84:1801–1803

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J. (2018). Submolecular-Resolution Imaging of Interfacial Water. In: High Resolution Imaging, Spectroscopy and Nuclear Quantum Effects of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1663-0_3

Download citation

Publish with us

Policies and ethics