Skip to main content

Wireless Communication Through Microtubule Analogue Device: Noise-Driven Machines in the Bio-Systems

  • Conference paper
  • First Online:
Engineering Vibration, Communication and Information Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 478))

  • 1047 Accesses

Abstract

Looking beyond ionic communication in bio-systems that is limited to a narrow band of kHz frequency domain is our objective. Microtubule, a vital subcellular biomolecule found in almost all eukaryotic living systems, plays an important role in processing the cellular information. Therefore, here we introduce a microtubule analogue device, which wirelessly communicates with the neighboring microtubules and harvest energy from the noise present in the environment. The device is composed of spatially arranged lattice geometry with two different lattice parameters made of capacitors as tubulin protein analogue arranged on cylindrical shape structures. To demonstrate that the noise is harvested, both the devices are operated by noise, no ordered signal is applied in any measurement. Separation between both the devices is varied, while nearing the distance, the transmitted signal increases continuously and when they are taken further apart, the signal decreases gradually to null at ~140 cm. We image live, the generation and transmission of magnetic flux condensate between these two devices. This experiment is also repeated by inserting a magnetic shield 99.99% pure Ni sheet between two structures, which allows very less wireless transmission due to the shielding. The wireless communication frequency is in the range kHz–MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simic, M., Bil, C., Vojisavljevic,V.: Investigation in wireless power transmission for UAV charging. Proc. Comput. Sci. 60, 1846–1855 (2015)

    Article  Google Scholar 

  2. Jawad, A.M., Nordin, R., Gharghan, S.K., Jawad, H.M., Ismail, M.: Opportunities and challenges for near-field wireless power transfer: a review. Energies 10(1022), 1–28 (2017)

    Google Scholar 

  3. Ho, J.S., Yeh, A.J., Neofytou, E., Kim, S., Tanabe, Y., Patlolla, B., Beygui, R.E., Poon, A.S.Y.: Wireless power transfer to deep-tissue microimplants. PNAS 111, 7974–7979 (2014)

    Article  Google Scholar 

  4. Jiang, H., Zhang, J., Lan, D., Chao, K.K., Liou, S., Shahnasser, H., Fechter, R., Hirose, S., Harrison, M., Roy, S.: A low-frequency versatile wireless power transfer technology for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 7, 526–535 (2013)

    Article  Google Scholar 

  5. Ghosh, S., Chatterjee, S., Roy, A., Ray, K., Swarnakar, S., Fujita, D., Bandyopahyay, A.: Resonant oscillation language of a futuristic nano-machine-module: eliminating cancer cells & Alzheimer Aβ plaques. Curr. Topic. Med. Chem. 15, 534–541 (2015)

    Article  Google Scholar 

  6. Zein, I., Wyman, J.: Studies on the dielectric constant of protein solutions. J. Biol. Chem. 76, 443–476 (1931)

    Google Scholar 

  7. Elliott, M.A., Williams, J.W.: The dielectric behavior of solutions of the protein zein. J. Am. Chem. Soc. 61, 718–725 (1939)

    Article  Google Scholar 

  8. Vollmer, F., Braun, D., Libchaber, A.: Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002)

    Article  Google Scholar 

  9. Schirò, G., Cupane, A., Vitrano, E., Bruni, F.: Dielectric relaxations in confined hydrated myoglobin. J. Phys. Chem. B 113, 9606–9613 (2009)

    Article  Google Scholar 

  10. Kim, Y.-H., Yoon, S-II, Park S., Kim, H-S, Kim, Y-J, Jung, H.-I.: A simple and direct biomolecule detection scheme based on a microwave resonator. Sens. Actuat. B 130, 823–828 (2008)

    Article  Google Scholar 

  11. Lu, Q., Shu, F.-J., Zou, C.-L.: Dielectric Bow-tie nanocavity. Opt. Lett. 38, 5311–5314 (2013)

    Article  Google Scholar 

  12. Verma, R., Daya, K.S.: Rapid detection of pM concentration of insulin, using microwave whispering gallery mode. IEEE Sens. J. 17, 2758–2765 (2017)

    Article  Google Scholar 

  13. Zhai, Z., Kusko, C., Hakim, N., Sridhar, S., Revcolevschi, A., Vietkine, A.: Precision microwave dielectric and magnetic susceptibility measurements of correlated electronic materials using superconducting cavities. Rev. Sci. Instrum. 71, 3151–3160 (2000)

    Article  Google Scholar 

  14. Hanham, S.M., Watts, C., Otter, W.J., Lucyszyn, S., Klein, N.: Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies. Appl. Phys. Lett. 107(032903), 1–5 (2015)

    Google Scholar 

  15. Burdette, E.C., Cain, F.L., Seals, J.: In vivo probe measurement technique at VHF through microwave frequencies. IEEE Trans. Microw. Theozy Tech. 28, 414–427 (1980)

    Article  Google Scholar 

  16. Ghosh, S., Sahu, S., Agrawal, L., Shiga, T., Bandyopadhyay, A.: Inventing a co-axial atomic resolution patch clamp to study a single resonating protein complex and ultra-low power communication deep inside a living neuron cell of integrative. Neuroscience 15, 403–433 (2016)

    Google Scholar 

  17. Glanz, J.: Force-carrying web pervades living cell. Science 276, 678–679 (1997)

    Article  Google Scholar 

  18. Pokorný, J.: Endogenous electromagnetic forces in living cells: implications for transfer of reaction components. Electro-Magnetobiol. 20, 59–73 (2001)

    Article  Google Scholar 

  19. Pethig, R.: Dielectric and electronic properties of biological materials 139, p. 376. Wiley, Chichester and New York (1979)

    Google Scholar 

  20. Sahu, S., Ghosh, S., Fujita, D., Bandyopadhyay, A.: Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 4(7303), 1–9 (2014)

    Google Scholar 

  21. Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A.: Atomic water channel controlling remarkable properties of a single brain microtubule: correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148 (2013)

    Article  Google Scholar 

  22. Ghosh, S., Sahu, S., Fujita, D., Bandyopadhyay, A.: Design and operation of a brain like computer: a new class of frequency-fractal computing using wireless communication in a supramolecular organic, inorganic systems. Information 5, 28–99 (2014)

    Article  Google Scholar 

  23. Tesla, N.: Apparatus for transmitting electrical energy. US patent 1,119,732 (1914)

    Google Scholar 

  24. Assawaworrarit, S., Yu, X., Fan, S.: Robust wireless power transfer using a nonlinear parity-time-symmetric circuit. Nature 546, 387–390 (2017)

    Article  Google Scholar 

  25. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačiic, M.: Wireless power transfer via strongly coupled magnetic resonance. Science 317, 83–86 (2007)

    Article  MathSciNet  Google Scholar 

  26. Nair, V.V., Choi, J.R.: An efficiency enhancement technique for a wireless power transmission system based on a multiple coil switching technique. Energies 9(156), 1–15 (2016)

    Google Scholar 

  27. Sample, A.P., Meyer, D.A., Smith, J.R.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Industr. Electron. 58, 544–554 (2011)

    Article  Google Scholar 

  28. Hameroff, S.R., Watt, R.C.: Information processing in microtubule. J. Theor. Biol. 98, 549–561 (1982)

    Article  Google Scholar 

  29. Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A.: Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 102(123701), 1–4 (2013)

    Google Scholar 

  30. Sahu, S., Fujita, D., Bandyopadhyay, A.: Inductor made of arrayed capacitors. 2010 Japanese patent has been issued on 20th August 2015 JP-511630 (world patent filed, this is the invention of fourth circuit element), US patent has been issued 9019685B2, 28 April (2015)

    Google Scholar 

  31. Heat pipe effect was invented long back by Gaugler, R.S., 1942; further improved by Grover, G., 1963

    Google Scholar 

  32. Catalog of Indek Corporation, 1998 holds this particular fact

    Google Scholar 

  33. Gasperi, M.L., Gollhardt, N.: Heat transfer model for capacitor banks. In: 33rd Annual Meeting of the IEEE IAS (1998)

    Google Scholar 

  34. Wang, Y., Gundevia, M.: Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers. Int. J. Heat Mass Trans. 60, 134–142 (2013)

    Article  Google Scholar 

  35. David, A.: Reay: thermal energy storage: the role of the heat pipe in performance enhancement. Int. J. Low-Carbon Technol. 10, 99–109 (2015)

    Article  Google Scholar 

  36. Zalba, B., Marin, J.M., Cabeza, L.F., Mehling, H.: Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)

    Article  Google Scholar 

  37. Udell, K.S.: Heat transfer in porous media considering phase change and capillarity—the heat pipe effect. Int. J. Heat Mass Trans. 28, 485–495 (1985)

    Article  Google Scholar 

  38. Parler, S.G.: Deriving life multipliers for Aluminum electrolytic capacitors. IEEE Power Electron. Soc. Newslett. 16, 11–12 (2004)

    Google Scholar 

  39. Buchner, R., Barthel, J., Stauber, J.: The dielectric relaxation of water between 0 ℃ and 35 ℃. Chem. Phys. Lett. 306, 57–63 (1999)

    Article  Google Scholar 

  40. Teeter, M.M.: Water structure of a hydrophobic protein at atomic resolution: pentagon rings of water molecules in crystals of crambin. Proc. Natl. Acad. Sci. U.S.A. 81, 6014–6018 (1984)

    Article  Google Scholar 

  41. Ebbinghaus, S., Kim, S.J., Heyden, M., Yu, X., Heugen, U., Gruebele, M., Leitner, D.M., Havenith, M.: An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. U.S.A. 104, 20749–20752 (2007)

    Article  Google Scholar 

  42. Otting, G., Liepinsh, E., Wuthrich, K.: Protein hydration in aqueous solution. Science 41, 974–980 (1991)

    Article  Google Scholar 

  43. Denisov, V., Peters, J., Hörlein, H.D., Halle, B.: Using buried water molecules to explore the energy landscape of proteins. Nature. Struct. Biol. 3, 505–509 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dave Sonntag and Martin Timms for the independent test and verification of our device as part of patent US9019685B2. Authors acknowledge the Asian office of Aerospace R&D (AOARD), a part of United States Air Force (USAF) for the Grant no. FA2386-16-1-0003 (2016–2019) on the electromagnetic resonance-based communication and intelligence of biomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saxena, K., Karthik, K.V., Kumar, S., Fujita, D., Bandyopadhyay, A. (2019). Wireless Communication Through Microtubule Analogue Device: Noise-Driven Machines in the Bio-Systems. In: Ray, K., Sharan, S., Rawat, S., Jain, S., Srivastava, S., Bandyopadhyay, A. (eds) Engineering Vibration, Communication and Information Processing. Lecture Notes in Electrical Engineering, vol 478. Springer, Singapore. https://doi.org/10.1007/978-981-13-1642-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1642-5_64

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1641-8

  • Online ISBN: 978-981-13-1642-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics