Skip to main content

Performance Optimization of Self-exited Piezoelectric Vibration Sensor

  • Conference paper
  • First Online:
Engineering Vibration, Communication and Information Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 478))

Abstract

Performance evaluation of self-exited piezoelectric vibration sensor with respect to dimensions, shape and material are carried out in the present paper, with an objective to find the design and dimension for which we get optimum performance in terms of frequency response and sensitivity. A new design is proposed based on the parameters discussed, for design COMSOL tool is used. Response for the designed vibration sensor for variation in frequency, with varying dimensions is performed for both differential and lateral loads. Results obtained give us information regarding the operating load, bandwidth, power, voltage and current ranges for best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yoon, S., Sim, J.K., Cho, Y.H.: A flexible piezoelectric pulsewave energy harvester for application to high-efficiency multi-functional skin patches. J. Microelectromech. Syst. 25(2), 388ā€“393 (2016)

    ArticleĀ  Google ScholarĀ 

  2. Yuan, S., Huang, Y., Zhou, J., Xu, Q., Song, C., Yuan, G.: A high-efficiency helical core for magnetic field energy harvesting. IEEE Trans. Power Electron. 32(7), 5365ā€“5376 (2017)

    ArticleĀ  Google ScholarĀ 

  3. Umaz, R., Garrett, C., Qian, F., Li, B., Wang, L.: A power management system for multianode benthic microbial fuel cells. IEEE Trans. Power Electron. 32(5), 3562ā€“3570 (2017)

    ArticleĀ  Google ScholarĀ 

  4. Zhao, L., Yang, Y.: Comparison of four electrical interfacing circuits in wind energy harvesting. Sens. Actuat. A 261, 117ā€“129 (2017)

    ArticleĀ  Google ScholarĀ 

  5. Hwang, W.S., Ahn, J.H., Jeong, S.Y., Jung, H.J., Hong, S.K., Choi, J.Y., Cho, J.Y., Kim, J.H., Sung, T.H.: Design of piezoelectric ocean-wave energy harvester using sway movement. Sens. Actuat. A 260, 191ā€“197 (2017)

    ArticleĀ  Google ScholarĀ 

  6. Asadi, E., Askari, H., Khamesee, M.B., Khajepour, A.: High frequency nano electromagnetic self-powered sensor: concept, modelling and analysis. Measurement 107, 31ā€“40 (2017)

    ArticleĀ  Google ScholarĀ 

  7. Khaligh, A., Zeng, P., Zheng, C.: Kinetic energy harvesting using piezoelectric and electromagnetic technologiesā€”state of the art. IEEE Trans. Industr. Electron. 57(3), 850ā€“860 (2010)

    ArticleĀ  Google ScholarĀ 

  8. Noh, M.S., Kim, S., Hwang, D.K., Kang, C.Y.: Self-powered flexible touch sensors based on PZT thin films using laser lift-off. Sens. Actuat. A: Phys. (2017)

    Google ScholarĀ 

  9. Modaresinezhad, E., Darbari, S.: Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sens. Actuat. B: Chem. 237, 358ā€“366 (2016)

    ArticleĀ  Google ScholarĀ 

  10. Lezhin, D.S., Falaleev, S.V., Safin, A.I., Ulanov, A.M., Vergnano, D.: Comparison of different methods of non-contact vibration measurement. Proc. Eng. 176, 175ā€“183 (2017)

    ArticleĀ  Google ScholarĀ 

  11. Saha, A., Das, S., Suresh, M., Kiran, V.R., Dey, N.: FPGA based self-vibration compensated two dimensional non-contact vibration measurement using 2D position sensitive detector with remote monitoring. Measurement 111, 271ā€“278 (2017)

    ArticleĀ  Google ScholarĀ 

  12. Kim, D., Khalil, H., Nam, J., Park, K.: Image-based tracking system for rotating object vibration measurement using laser scanning vibrometer. Int. J. Prec. Eng. Manuf. 16(8), 1717ā€“1721 (2015)

    ArticleĀ  Google ScholarĀ 

  13. Zhang, B., Cheng, L., Liang, Y., Jin, L., Guo, T., Guan, B.O.: Low-frequency vibration measurement by a dual-frequency DBR fiber laser. Photon. Sen. 1ā€“5 (2017)

    Google ScholarĀ 

  14. Grigorā€™ev, A.V., Zatylkin, A.V., Yurkov, N.K.: Method for contactless three-component vibration measurement. Measure. Tech. 59(12), 1291ā€“1296 (2017)

    ArticleĀ  Google ScholarĀ 

  15. Gao, X., Zhang, B., Feng, Q., Xie, X., Yang, L.: Nano-vibration measurements using the photoelectromotive force effect in the GaAs crystal. Instr. Exp. Tech. 59(3), 470ā€“475 (2016)

    ArticleĀ  Google ScholarĀ 

  16. Kutanis, M., Boru, E.O., Işık, E.: Alternative instrumentation schemes for the structural identification of the reinforced concrete field test structure by ambient vibration measurements. KSCE J. Civil Eng. 21(5), 1793ā€“1801 (2017)

    ArticleĀ  Google ScholarĀ 

  17. Gosk, W., Czech, K.R.: Determination of sandy subsoil stiffness on the basis of surface vibration measurement. Proc. Eng. 189, 105ā€“210 (2017)

    ArticleĀ  Google ScholarĀ 

  18. Rota-Rodrigo, S., LĆ³pez-Aldaba, A., PĆ©rez-Herrera, R.A., Bautista, M.D., Esteban, Ɠ., LĆ³pez-Amo, M.: Simultaneous measurement of humidity and vibration based on a microwire sensor system using fast Fourier transform technique. J. Lightwave Technol. 34(19), 4525ā€“4530 (2016)

    ArticleĀ  Google ScholarĀ 

  19. Williams, C.B., Yates, R.B.: Analysis of micro-electric generator for Microsystems. Sens. Actuat. A 52, 1ā€“3 (1996)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Santhosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santhosh, K.V., Eā€˜silva Nathan, N. (2019). Performance Optimization of Self-exited Piezoelectric Vibration Sensor. In: Ray, K., Sharan, S., Rawat, S., Jain, S., Srivastava, S., Bandyopadhyay, A. (eds) Engineering Vibration, Communication and Information Processing. Lecture Notes in Electrical Engineering, vol 478. Springer, Singapore. https://doi.org/10.1007/978-981-13-1642-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1642-5_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1641-8

  • Online ISBN: 978-981-13-1642-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics