Applications: Aqueous Interfaces

  • Akihiro Morita
Part of the Lecture Notes in Chemistry book series (LNC, volume 97)


This chapter presents recent applications of the computational SFG analysis for aqueous interfaces. Aqueous interfaces are relevant to a variety of fields in chemistry and engineering, and have been extensively investigated by SFG spectroscopy. Nevertheless, their hydrogen-bonding network and complicated vibrational coupling hinder simple intuitive interpretation of the observed spectra. The aid of MD simulation to analyze the complicated SFG spectra is actually quite powerful. This chapter introduces the results of analysis for various aqueous interfaces led by the author’s group and others, including water, ice, electrolyte aqueous solutions, water-oil and water-membrane interfaces.


O–H stretching Vibrational coupling Interface thickness Ion segregation Electric double layer 


  1. 1.
    Agmon N, Bakker HJ, Campen RK, Henchman RH, Pohl P, Roke S, Thämer M, Hassanali A (2016) Protons and hydroxide ions in aqueous systems. Chem Rev 116:7642–7672Google Scholar
  2. 2.
    Baldelli S, Schnitzer C, Shultz MJ, Campbell DJ (1997) Sum frequency generation investigation of water at the surface of H2O/H2SO4 binary systems. J Phys Chem B 101:10435–10441Google Scholar
  3. 3.
    Ball P (2008) Water – an enduring mystery. Nature 452:291–292Google Scholar
  4. 4.
    Benjamin I (1994) Vibrational spectrum of water at the liquid/vapor interface. Phys Rev Lett 73:2083–2086Google Scholar
  5. 5.
    Benjamin I (1995) Theory and computer simulations of solvation and chemical reactions at liquid interfaces. Acc Chem Res 28:233–239Google Scholar
  6. 6.
    Benjamin I (2015) Reaction dynamics at liquid interfaces. Annu Rev Phys Chem 66:165–188Google Scholar
  7. 7.
    Berg JM, Tymoczko JL, Gregory J, Gatto J, Stryer L (2015) Biochemistry, 8th edn. W. H. Freeman, New YorkGoogle Scholar
  8. 8.
    Bonn M, Bakker HJ, Ghosh A, Yamamoto S, Sovago M, Campen RK (2010) Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump-probe spectroscopy. J Am Chem Soc 132:14971–14978Google Scholar
  9. 9.
    Bonn M, Nagata Y, Backus EHG (2015) Molecular structure and dynamics of water at the water-air interface studied with surface-specific vibrational spectroscopy. Angew Chem Int Ed 54:5560–5576Google Scholar
  10. 10.
    Buch V (2005) Molecular structure and OH-stretch spectra of liquid water surface. J Phys Chem B 109:17771–17774Google Scholar
  11. 11.
    Buch V, Tarbuck T, Richmond GL, Groenzin H, Li I, Shultz MJ (2007) Sum frequency generation surface spectra of ice, water, and acid solution investigated by an exciton model. J Chem Phys 127:204710Google Scholar
  12. 12.
    Chang T, Dang LX (1996) Molecular dynamics simulations of CCl4-H2O liquid-liquid interface with polarizable potential models. J Chem Phys 104:6772–6783Google Scholar
  13. 13.
    Das B, Sharma B, Chandra A (2018) Effects of tert-Butyl alcohol on water at the liquid-vapor interface: structurally bulk-like but dynamically slow interfacial water. J Phys Chem C 122:9374–9388Google Scholar
  14. 14.
    Du Q, Superfine R, Freysz E, Shen YR (1993) Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett 70:2313–2316Google Scholar
  15. 15.
    Faraday M (1850) On certain conditions of freezing water. The Athenaeum 1181:640Google Scholar
  16. 16.
    Franks F (ed) (1972) Water: a comprehensive treatise, vol 1. Plenum Press, New YorkGoogle Scholar
  17. 17.
    Gopalakrishnan S, Jungwirth P, Tobias DJ, Allen HC (2005) Air-liquid interfaces of aqueous solutions containing ammonium and sulfate: spectroscopic and molecular dynamics studies. J Phys Chem B 109:8861–8872Google Scholar
  18. 18.
    Gopalakrishnan S, Liu D, Allen HC, Kuo M, Shultz MJ (2006) Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem Rev 106:1155–1175Google Scholar
  19. 19.
    Groenzin H, Li I, Buch V, Shultz MJ (2007) The single-crystal, basal face of ice Ih investigated with sum frequency generation. J Chem Phys 127:214502Google Scholar
  20. 20.
    Haynes WM (ed) (2012) CRC handbook of chemistry and physics, 93rd edn. CRC Press, Boca RatonGoogle Scholar
  21. 21.
    Heydweiller A (1910) Über physikalische Eigenschaften von Lösungen in ihrem Zusammenhang. II. Oberflächenspannung und elektrisches Leitvermögen wässeriger Salzlösungen. Ann Physik 4 33:145–185Google Scholar
  22. 22.
    Hua W, Verreault D, Allen HC (2015) Solvation of calcium-phosphate headgroup complex at the DPPC/aqueous interface. Chem Phys Chem 16:3910–3915Google Scholar
  23. 23.
    Imamura T, Mizukoshi Y, Ishiyama T, Morita A (2012) Surface structures of NaF and Na2SO4 aqueous solutions: specific effects of hard ions on surface vibrational spectra. J Phys Chem C 116:11082–11090Google Scholar
  24. 24.
    Imamura T, Ishiyama T, Morita A (2014) Molecular dynamics analysis of naoh aqueous solution surface and the sum frequency generation spectra: is surface OH detected by SFG spectroscopy? J Phys Chem C 118:29017–29027Google Scholar
  25. 25.
    Inoue K, Ishiyama T, Nihonyanagi S, Yamaguchi S, Morita A, Tahara T (2016) Efficient spectral diffusion at the air/water interface revealed by femtosecond time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. J Phys Chem Lett 7:1811–1815Google Scholar
  26. 26.
    Ishiyama T, Morita A (2007) Molecular dynamics analysis of interfacial structures and sum frequency generation spectra of aqueous hydrogen halide solutions. J Phys Chem A 111:9277–9285Google Scholar
  27. 27.
    Ishiyama T, Morita A (2007) Molecular dynamics study of gas-liquid aqueous sodium halide interfaces. I. Flexible and polarizable molecular modeling and interfacial properties. J Phys Chem C 111:721–737Google Scholar
  28. 28.
    Ishiyama T, Morita A (2007) Molecular dynamics study of gas-liquid aqueous sodium halide interfaces II. Analysis of vibrational sum frequency generation spectra. J Phys Chem C 111:738–748Google Scholar
  29. 29.
    Ishiyama T, Morita A (2009) Analysis of anisotropic local field in sum frequency generation spectroscopy with the charge response kernel water model. J Chem Phys 131:244714Google Scholar
  30. 30.
    Ishiyama T, Morita A (2011) Molecular dynamics simulation of sum frequency generation spectra of aqueous sulfuric acid solution. J Phys Chem C 115:13704–13716Google Scholar
  31. 31.
    Ishiyama T, Morita A (2014) A direct evidence of vibrationally delocalized response at ice surface. J Chem Phys 141:18C503Google Scholar
  32. 32.
    Ishiyama T, Morita A (2017) Computational analysis of vibrational sum frequency generation spectroscopy. Annu Rev Phys Chem 68:355–377Google Scholar
  33. 33.
    Ishiyama T, Morita A, Miyamae T (2011) Surface structure of sulfuric acid solution relevant to sulfate aerosol: molecular dynamics simulation combined with sum frequency generation measurement. Phys Chem Chem Phys 13:20965–20973Google Scholar
  34. 34.
    Ishiyama T, Sato Y, Morita A (2012) Interfacial structures and vibrational spectra at liquid/liquid boundaries: molecular dynamics study of water/carbon tetrachloride and water/1,2-dichloroethane interfaces. J Phys Chem C 116:21439–21446Google Scholar
  35. 35.
    Ishiyama T, Takahashi H, Morita A (2012) Origin of vibrational spectroscopic response at ice surface. J Phys Chem Lett 3:3001–3006Google Scholar
  36. 36.
    Ishiyama T, Imamura T, Morita A (2014) Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem Rev 114:8447–8470Google Scholar
  37. 37.
    Ishiyama T, Terada D, Morita A (2016) Hydrogen-bonding structure at zwitterionic lipid/water interface. J Phys Chem Lett 7:216–220Google Scholar
  38. 38.
    Ishiyama T, Shirai S, Okumura T, Morita A (2018) Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces. J Chem Phys 148:222801Google Scholar
  39. 39.
    Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, OxfordGoogle Scholar
  40. 40.
    Ji N, Ostroverkhov V, Tian CS, Shen YR (2008) Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys Rev Lett 100:096102Google Scholar
  41. 41.
    Johnson CM, Baldelli S (2014) Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem Rev 114:8416–8446Google Scholar
  42. 42.
    Jungwirth P, Tobias DJ (2001) Molecular structure of salt solutions: a new view of the interface with implications for heterogeneous atmospheric chemistry. J Phys Chem B 105:10468–10472Google Scholar
  43. 43.
    Jungwirth P, Finlayson-Pitts BJ, Tobias DJ (eds) (2006) Structure and chemistry at aqueous interfaces. Chem Rev 106:1137–1539Google Scholar
  44. 44.
    Jungwirth P et al (2008) Water – from interfaces to the bulk. Faraday Discuss 141:1–488Google Scholar
  45. 45.
    Kawaguchi T, Shiratori K, Henmi Y, Ishiyama T, Morita A (2012) Mechanisms of sum frequency generation from liquid benzene: symmetry breaking at interface and bulk contribution. J Phys Chem C 116:13169–13182Google Scholar
  46. 46.
    Khatib R, Hasegawa T, Sulpizi M, Backus EHG, Bonn M, Nagata Y (2016) Molecular dynamics simulations of SFG librational modes spectra of water at the water-air interface. J Phys Chem C 120:18665–18673Google Scholar
  47. 47.
    Kundu A, Tanaka S, Ishiyama T, Ahmed M, Inoue K, Nihonyanagi S, Sawai H, Yamaguchi S, Morita A, Tahara T (2016) Bend vibration of surface water investigated by heterodyne-detected sum frequency generation and theoretical study: dominant role of quadrupole. J Phys Chem Lett 7:2597–2601Google Scholar
  48. 48.
    Leich MA, Richmond GL (2005) Recent experimental advances in studies of liquid/liquid interfaces. Faraday Discuss 129:1–21, and the papers in this issueGoogle Scholar
  49. 49.
    Liu D, Ma G, Levering LM, Allen HC (2004) Vibrational spectroscopy of aqueous sodium halide solutions and air-liquid interfaces: observation of increased interfacial depth. J Phys Chem B 108:2252–2260Google Scholar
  50. 50.
    Matsuzaki K, Nihonyanagi S, Yamaguchi S, Nagata T, Tahara T (2013) Vibrational sum frequency generation by the quadrupolar mechanism at the nonpolar benzene/air interface. J Phys Chem Lett 4:1654–1658Google Scholar
  51. 51.
    McGuire JA, Shen YR (2006) Ultrafast vibrational dynamics at water interfaces. Science 313:1945–1948Google Scholar
  52. 52.
    Medders GR, Paesani F (2016) Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum. J Am Chem Soc 138:3912–3919Google Scholar
  53. 53.
    Miyamae T, Morita A, Ouchi Y (2008) First acid dissociation at an aqueous H2SO4 interface with sum frequency generation spectroscopy. Phys Chem Chem Phys 10:2010–2013Google Scholar
  54. 54.
    Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T (2012) Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J Am Chem Soc 134:7842–7850Google Scholar
  55. 55.
    Moore FG, Richmond GL (2008) Integration or segregation: how do molecules behave at oil/water interfaces? Acc Chem Res 41:739–748Google Scholar
  56. 56.
    Morita A (2006) Improved computation of sum frequency generation spectrum of water surface. J Phys Chem B 110:3158–3163Google Scholar
  57. 57.
    Morita A, Hynes JT (2000) A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem Phys 258:371–390Google Scholar
  58. 58.
    Mucha M, Frigato T, Levering LM, Allen HC, Tobias DJ, Dang LX, Jungwirth P (2005) Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions. J Phys Chem B 109:7617–7623Google Scholar
  59. 59.
    Nagata Y, Mukamel S (2010) Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J Am Chem Soc 132:6434–6442Google Scholar
  60. 60.
    Nagata Y, Hsieh C-S, Hasegawa T, Voll J, Backus EHG, Bonn M (2013) Water bending mode at the water-vapor interface probed by sum-frequency generation spectroscopy: a combined molecular dynamics simulation and experimental study. J Phys Chem Lett 4:1872–1877Google Scholar
  61. 61.
    Nagata Y, Ohto T, Backus EHG, Bonn M (2016) Molecular modeling of water interfaces: from molecular spectroscopy to thermodynamics. J Phys Chem B 120:3785–3796Google Scholar
  62. 62.
    Nagata Y, Pool R, Backus EHG, Bonn M (2012) Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett 109:226101Google Scholar
  63. 63.
    Nelson DL, Cox MM (2013) Lehninger: principles of biochemistry, 6th edn. W. H. Freeman, New YorkGoogle Scholar
  64. 64.
    Ni Y, Skinner JL (2015) IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively. J Chem Phys 143:014502Google Scholar
  65. 65.
    Nihonyanagi S, Yamaguchi S, Tahara T (2009) Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J Chem Phys 130:204704Google Scholar
  66. 66.
    Nihonyanagi S, Ishiyama T, Lee T-K, Yamaguchi S, Bonn M, Morita A, Tahara T (2011) Unified molecular view of air/water interface based on experimental and theoretical χ (2) spectra of isotopically diluted water surface. J Am Chem Soc 133:16875–16880Google Scholar
  67. 67.
    Nihonyanagi S, Kusaka R, Inoue K, Adhikari A, Yamaguchi S, Tahara T (2015) Accurate determination of complex χ (2) spectrum of the air/water interface. J Chem Phys 143:124707Google Scholar
  68. 68.
    Nojima Y, Suzuki Y, Takahashi M, Yamaguchi S (2017) Proton order toward the surface of ice Ih revealed by heterodyne- detected sum frequency generation spectroscopy. J Phys Chem Lett 8:5031–5034Google Scholar
  69. 69.
    Ohto T, Backus EHG, Hsieh CS, Sulpizi M, Bonn M, Nagata Y (2015) Lipid carbonyl groups terminate the hydrogen-bond network of membrane-bound water. J Phys Chem Lett 6:4499–4503Google Scholar
  70. 70.
    Onsager L, Samaras NNT (1934) The surface tension of Debye-Hückel electrolytes. J Chem Phys 2:528–536Google Scholar
  71. 71.
    Otsuki Y, Sugimoto T, Ishiyama T, Morita A, Watanabe K, Matsumoto Y (2017) Unveiling subsurface hydrogen-bond structure of hexagonal water ice. Phys Rev B 96:115405Google Scholar
  72. 72.
    Ottosson N, Faubel M, Bradforth SE, Jungwirth P, Winter B (2010) Photoelectron spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J Elec Spec Rel Phen 177:60–70Google Scholar
  73. 73.
    Perry A, Ahlborn H, Space B, Moore PB (2003) A combined time correlation function and instantaneous normal mode study of the sum frequency generation spectroscopy of the water/vapor interface. J Chem Phys 118:8411–8419Google Scholar
  74. 74.
    Perry A, Neipert C, Kasprzyk CR, Green T, Space B, Moore PB (2005) A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface. J Chem Phys 123:144705Google Scholar
  75. 75.
    Perry A, Neipert C, Ridley C, Space B, Moore PB (2005) Identification of a wagging vibrational mode of water molecules at the water/vapor interface. Phys Rev E 71:050601Google Scholar
  76. 76.
    Perry A, Neipert C, Space B, Moore PB (2006) Theoretical modeling of interface specific vibrational spectroscopy: methods and applications to aqueous interfaces. Chem Rev 106:1234–1258Google Scholar
  77. 77.
    Petersen PB, Saykally RJ (2006) On the nature of ions at the liquid water surface. Annu Rev Phys Chem 57:333–364Google Scholar
  78. 78.
    Petersen MK, Iyengar SS, Day TJF, Voth GA (2004) The hydrated proton at the water liquid/vapor interface. J Phys Chem B 108:14804–14806 (2004)Google Scholar
  79. 79.
    Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, OxfordGoogle Scholar
  80. 80.
    Pieniazek PA, Tainter CJ, Skinner JL (2011) Interpretation of the water surface vibrational sum-frequency spectrum. J Chem Phys 135:044701Google Scholar
  81. 81.
    Pieniazek PA, Tainter CJ, Skinner JL (2011) Surface of liquid water: three-body ineractions and vibrational sum-frequency spectroscopy. J Am Chem Soc 133:10360–10363Google Scholar
  82. 82.
    Pohorille A, Wilson MA (1996) Excess chemical potential of small solutes across water-membrane and water-hexane interfaces. J Chem Phys 104:3760–3773Google Scholar
  83. 83.
    Radüge C, Pflumio V, Shen YR (1997) Surface vibrational spectroscopy of sulfuric acid-water mixtures at the liquid-vapor interface. Chem Phys Lett 274:140–144Google Scholar
  84. 84.
    Randles JEB (1977) Structure at the free surface of water and aqueous electrolyte solutions. Phys Chem Liq 7:107–179Google Scholar
  85. 85.
    Raymond EA, Richmond GL (2004) Probing the molecular structure and bonding of the surface of aqueous salt solutions. J Phys Chem B 108:5051–5059Google Scholar
  86. 86.
    Re S, Nishima W, Tahara T, Sugita Y (2014) Mosaic of water orientation structures at a neutral zwitterionic lipid/water interface revealed by molecular dynamics simulations. J Phys Chem Lett 5:4343–4348Google Scholar
  87. 87.
    Reddy SK, Thiraux R, Rudd BAW, Lin L, Adel T, Joutsuka T, Geiger FM, Allen HC, Morita A, Paesani F (2018) Bulk contributions modulate the sum-frequency generation spectra of interfacial water on model sea-spray aerosols. Chem.
  88. 88.
    Richmond GL (2002) Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem Rev 102:2693–2724CrossRefPubMedGoogle Scholar
  89. 89.
    Richmond GL (ed) (2014) Special section: aqueous interfaces. Chem Rev 114:8361–8498Google Scholar
  90. 90.
    Roy S, Hore D (2012) Simulated structure and nonlinear vibrational spectra of water next to hydrophobic and hydrophilic solid surfaces. J Phys Chem C 116:22867–22877CrossRefGoogle Scholar
  91. 91.
    Roy S, Gruenbaum SM, Skinner JL (2014) Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. J Chem Phys 141:18C502Google Scholar
  92. 92.
    Sánchez MA, Kling T, Ishiyama T, van Zadel M-J, Bisson PJ, Mezger M, Jochum MN, Cyran JD, Smit WJ, Bakker HJ, Shultz MJ, Morita A, Donadio D, Nagata Y, Bonn M, Backus EHG (2017) Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc Natl Acad Sci 114:227–232CrossRefPubMedGoogle Scholar
  93. 93.
    Shen YR, Ostroverkhov V (2006) Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem Rev 106:1140–1154CrossRefPubMedGoogle Scholar
  94. 94.
    Shultz MJ, Schnitzer C, Simonelli D, Baldelli S (2000) Sum frequency generation spectroscopy of the aqueous interfaces: ionic and soluble molecular solutions. Int Rev Phys Chem 19:123–153CrossRefGoogle Scholar
  95. 95.
    Shultz MJ, Bisson P, Groenzin H, Li I (2010) Multiplexed polarization spectroscopy: measuring surface hyperpolarizability orientation. J Chem Phys 133:054702CrossRefPubMedGoogle Scholar
  96. 96.
    Skinner JL, Pieniazek PA, Gruenbaum SM (2012) Vibrational spectroscopy of water at interfaces. Acc Chem Res 45:93–100CrossRefPubMedGoogle Scholar
  97. 97.
    Smit WJ, Tang F, Nagata Y, Sánchez MA, Hasegawa T, Backus EHG, Bonn M, Bakker HJ (2017) Observation and identification of a new oh stretch vibrational band at the surface of ice. J Phys Chem Lett 8:3656–3660CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Sovago M, Campen RK, Wurpel GWH, Müller M, Bakker HJ, Bonn M (2008) Vibrational response of hydrogen-bonded interfacial watger is dominated by intramolecular coupling. Phys Rev Lett 100:173901CrossRefPubMedGoogle Scholar
  99. 99.
    Sovago M, Campen RK, Bakker HJ, Bonn M (2009) Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chem Phys Lett 470:7–12CrossRefGoogle Scholar
  100. 100.
    Steel WH, Walker RA (2003) Measuring dipolar width across liquid-liquid interfaces with ‘molecular rulers’. Nature 424:296–299CrossRefPubMedGoogle Scholar
  101. 101.
    Steel WH, Walker RA (2003) Solvent polarity at an aqueous/alkane interface: the effect of solute identity. J Am Chem Soc 125:1132–1133CrossRefPubMedGoogle Scholar
  102. 102.
    Su X, Lianos L, Shen YR, Somorjai GA (1998) Surface-induced ferroelectric ice on Pt(111). Phys Rev Lett 80:1533–1536CrossRefGoogle Scholar
  103. 103.
    Sulpizi M, Salanne M, Sprik M, Gaigeot M (2013) Vibrational sum frequency generation spectroscopy of the water liquid.vapor interface from density functional theory-based molecular dynamics simulations. J Phys Chem Lett 4:83–87CrossRefPubMedGoogle Scholar
  104. 104.
    Tarbuck TL, Ota ST, Richmond GL (2006) Spectroscopic studies of solvated hydrogen and hydroxidde ions at aqueous surfaces. J Am Chem Soc 128:14519–14527CrossRefPubMedGoogle Scholar
  105. 105.
    Tian C-S, Shen YR (2009) Isotopic dilution study of the water/vapor interface by phase-sensitive sum-frequency vibrational spectroscopy. J Am Chem Soc 131:2790–2791CrossRefPubMedGoogle Scholar
  106. 106.
    Tian CS, Ji N, Waychunas GA, Shen YR (2008) Interfacial structures of acidic and basic aqueous solutions. J Am Chem Soc 130:13033–13039CrossRefPubMedGoogle Scholar
  107. 107.
    Verreault D, Hua W, Allen HC (2012) From conventional to phase-sensitive vibrational sum frequency generation spectroscopy: probing water organization at aqueous interfaces. J Phys Chem Lett 3:3012–3028CrossRefPubMedGoogle Scholar
  108. 108.
    Vinaykin M, Benderskii AV (2012) Vibrational sum-frequency spectrum of the water bend at the air/water interface. J Phys Chem Lett 3:3348–3352CrossRefGoogle Scholar
  109. 109.
    Walker DS, Richmond GL (2007) Depth profiling of water molecules at the liquid-liquid interface using a combined surface vibrational spectroscopy and molecular dynamics approach. J Am Chem Soc 129:9446–9451CrossRefPubMedGoogle Scholar
  110. 110.
    Walker DS, Richmond GL (2007) Understanding the effects of hydrogen bonding at the vapor-water interface: vibrational sum frequency spectroscopy of H2O/HOD/D2O mixtures studied using molecular dynamics simultions. J Phys Chem C 111:8321–8330CrossRefGoogle Scholar
  111. 111.
    Walker DS, Moore FG, Richmond GL (2007) Vibrational sum frequency spectroscopy and molecular dynamics simulation of the carbon tetrachloride-water and 1,2-dichloroethane-water interfaces. J Phys Chem C 111:6103–6112CrossRefGoogle Scholar
  112. 112.
    Wan Q, Galli G (2015) First-principles framework to compute sum-frequency generation vibrational spectra of semiconductors and insulators. Phys Rev Lett 115:246404CrossRefPubMedGoogle Scholar
  113. 113.
    Wei X, Miranda PB, Shen YR (2001) Surface vibrational spectroscopic study of surface melting of ice. Phys Rev Lett 86:1554–1557CrossRefPubMedGoogle Scholar
  114. 114.
    Yamaguchi S (2015) Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. J Chem Phys 143:034202CrossRefPubMedGoogle Scholar
  115. 115.
    Zhang Y, Cremer PS (2010) Chemistry of hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Akihiro Morita
    • 1
  1. 1.Tohoku UniversitySendaiJapan

Personalised recommendations