Skip to main content

Quadrupole Contributions from Interface and Bulk

  • Chapter
  • First Online:
Theory of Sum Frequency Generation Spectroscopy

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 97))

  • The original version of the chapter has been revised. Footnotes 4 and 6 has been inserted. Several equations on pages 158, 173, 174, 176, 178, 180, 181, 182, 183, 194, 195, 196, have been updated. A correction to this chapter can be found at https://doi.org/10.1007/978-981-13-1607-4_12

Abstract

This chapter provides the comprehensive argument on quadrupole contributions in SFG spectroscopy. Though the preceding chapters have dealt with the induced dipole contribution, the accurate theory of SFG and SHG should take account of the induced quadrupole beside the dipole. The former can arise from the bulk region, while the latter stems only from the interface. We clarify three kinds of quadrupole contributions, namely χ IQ, χ IQB and χ B, in addition to the dipole one χ ID. The four terms have different roles in SFG and SHG spectra, as summarized in Sect. 7.5. The following discussion elucidates these quadrupole mechanisms and characters, and derives their microscopic formulas for calculating them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 11 January 2023

    The original version of this book was inadvertently published with errors. The corrections listed below are incorporated after publication

Notes

  1. 1.

    The general “quadrupole” term incorporates the electric quadrupole and the magnetic dipole contributions, as we argue later.

  2. 2.

    In Eq. (7.6) each factor of χ D0 and E loc is statistically averaged before taking the product, whereas in fully microscopic theory their product should be statistically averaged. Therefore, Eq. (7.6) is regarded as an approximated treatment of the fully microscopic theory in Chap. 5, though it is convenient to formulate the z-dependence of polarization. Fully microscopic computation of quadrupolar susceptibilities does not involve this approximation unless they are decomposed along the z.

  3. 3.

    We note in passing that Eq. (7.36) is different from the bulk polarization given in the previous literature [5, 11] (e.g. Eq. (1.2) of Ref. [11]). In Appendix A.3 we detail the difference and recommend the present definition.

  4. 4.

    Note that the gradient of the generalized quadrupole moment \(-\sum\limits _q {\partial _{q}} q_{pq} (\omega )\) gives rise to the polarization, as we have mentioned in relation to Eq. (7.21). The current J is related to the multipole moments by

    $$\displaystyle \begin{aligned} J_{p} & =\left[ {\frac{d}{dt}\left({{\boldsymbol{\mu }}-\nabla \cdot {\boldsymbol{q}}^{\mathrm{E}}} \right)+c\nabla \times {\boldsymbol{\mu }}^{\mathrm{M}}+\cdots }\right]_{p} \\ &=-i\omega \left( {\mu_{p} -\sum_q {\partial_{q} } q_{pq}^{\mbox{E}} } \right)+c\sum_{q,r} {\varepsilon_{pqr} } \partial_{q} \mu_{r}^{\mathrm{M}} +\cdots \\ & =-i\omega \left({\mu_{p} -\sum_q {\partial_{q} } q_{pq} (\omega )} \right) \end{aligned} $$

    where we assumed the phase factor of \(\exp (-i\omega t)\) (see Eq. (1.3)).

  5. 5.

    We could assume that Δz l is infinitesimally small without losing generality, since an arbitrary finite displacement is expressed by assembly of infinitesimally small ones.

  6. 6.

    χ IQB could be interpreted as the contribution of electric quadrupole and magnetic dipole radiation. Here we present a heuristic explanation.

  7. 7.

    Therefore, ε ijk B j C k ≡∑ j, ijk B j C k.

Bibliography

  1. Adler E (1964) Nonlinear optical frequency polarization in a dielectric. Phys Rev 134:A728–A733

    Article  Google Scholar 

  2. Bloembergen N, Chang RK, Jha SS, Lee CH (1968) Optical second-harmonic generation in reflection from media with inversion symmetry. Phys Rev 174:813–822

    Article  CAS  Google Scholar 

  3. Bloembergen N, Pershan PS (1962) Light waves at the boundary of nonlinear media. Phys Rev 128:606–622

    Article  Google Scholar 

  4. Boyd RW (2003) Nonlinear optics. Academic, Amsterdam

    Google Scholar 

  5. Byrnes SJ, Geissler PL, Shen YR (2011) Ambiguities in surface nonlinear spectroscopy calculations. Chem Phys Lett 516:115–124

    Article  CAS  Google Scholar 

  6. Guyot-Sionnest P, Chen W, Shen YR (1986) General considerations on optical second-harmonic generation from surfaces and interfaces. Phys Rev B 33:8254–8263

    Article  CAS  Google Scholar 

  7. Guyot-Sionnest P, Shen YR (1987) Local and nonlocal surface nonlinearities for surface optical second-harmonic generation. Phys Rev B 35:4420–4426

    Article  CAS  Google Scholar 

  8. Guyot-Sionnest P, Shen YR (1988) Bulk contribution in surface second-harmonic generation. Phys Rev B 38:7985–7989

    Article  CAS  Google Scholar 

  9. Hardy GH (1949) Divergent series. Clarendon Press, Oxford

    Google Scholar 

  10. Heinz TF (1991) Second-order nonlinear optical effects at surfaces and interfaces. In: Ponath H-E, Stegeman GI (eds) Nonlinear surface electromagnetic phenomena. Elsevier, Amsterdam, pp 353–416

    Chapter  Google Scholar 

  11. Held H, Lvovsky AI, Wei X, Shen YR (2002) Bulk contribution from isotropic media in surface sum-frequency generation. Phys Rev B 66:205110

    Article  Google Scholar 

  12. Kawaguchi T, Shiratori K, Henmi Y, Ishiyama T, Morita A (2012) Mechanisms of sum frequency generation from liquid benzene: symmetry breaking at interface and bulk contribution. J Phys Chem C 116:13169–13182

    Article  CAS  Google Scholar 

  13. Kundu A, Tanaka S, Ishiyama T, Ahmed M, Inoue K, Nihonyanagi S, Sawai H, Yamaguchi S, Morita A, Tahara T (2016) Bend vibration of surface water investigated by heterodyne-detected sum frequency generation and theoretical study: dominant role of quadrupole. J Phys Chem Lett 7:2597–2601

    Article  CAS  PubMed  Google Scholar 

  14. Morita A (2004) Toward computation of bulk quadrupolar signals in vibrational sum frequency generation spectroscopy. Chem Phys Lett 398:361–366

    Article  CAS  Google Scholar 

  15. Neipert C, Space B, Roney AB (2007) Generalized computational time correlation function approach: quantifying quadrupole contributions to vibrationally resonant second-order interface-specific optical spectroscopies. J Phys Chem C 111:8749–8756

    Article  CAS  Google Scholar 

  16. Pershan PS (1963) Nonlinear optical properties of solids: energy considerations. Phys Rev 130:919–929

    Article  Google Scholar 

  17. Shiratori K, Morita A (2012) Theory of quadrupole contributions from interface and bulk in second-order optical processes. Bull Chem Soc Jpn 85:1061–1076

    Article  CAS  Google Scholar 

  18. Sipe JE, Mizrahi V, Stegeman GI (1987) Fundamental difficulty in the use of second-harmonic generation as a strictly surface probe. Phys Rev B 35:9091–9094

    Article  CAS  Google Scholar 

  19. Sipe JE, Moss DJ, van Driel HM (1987) Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys Rev B 35:1129–1141

    Article  CAS  Google Scholar 

  20. Terhune RW, Maker PD, Savage CM (1962) Optical harmonic generation in calcite. Phys Rev Lett 8:404–406

    Article  CAS  Google Scholar 

  21. Wei X, Hong SC, Goto T, Shen YR (2000) Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface. Phys Rev E 62:5160–5172

    Article  CAS  Google Scholar 

  22. Wilson MA, Pohorille A, Pratt LR (1989) Comment on “study on the liquid-vapor interface of water. I. Simulation results of thermodynamic properties and orientational structure”. J Chem Phys 90:5211–5213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Morita .

Appendices

Appendix

A.1 Physical Meaning of χ IQB

Among the four terms of nonlinear susceptibility summarized in Fig. 7.5, χ IQB may be difficult to understand intuitively. It arises from the integral of nonlinear polarization over the interface region in Sect. 7.2.3, though it is a pure bulk property. The χ IQB term is known to have significant contribution in some SFG spectra [12, 13]. Here we explain its origin and physical meaning in an illustrative manner.Footnote 6

As we discussed in Sect. 7.2.3, the χ IQB term in Eq. (7.30) originates from the integral of quadrupole over the interface. Accordingly, we consider the situation in Fig. 7.6 that the induced quadrupole is distributed over the whole interface system, and evaluate the net polarization of interface P I in Eq. (7.26) by integrating the dipole polarization over the interface region from z = z b to . The lower bound z = z b is arbitrarily chosen in the bulk region so that the integral encompasses the whole interface region. In this integral of polarization, the distributed quadrupole comes into play at the lower bound z = z b. The molecules located across the threshold z = z b partially contribute to the integral, since the divided quadrupole moments Q yz and Q zz bring net dipole moments μ y and μ z, respectively, in the integral of P I. The contribution necessarily arises from the uniformly distributed quadrupole, irrespective of the location of the threshold z = z b. We note that this mechanism is essentially common to the role of quadrupole on the surface potential [22].

Fig. 7.6
figure 6

(Left) Schematic picture of the quadrupole (Q zz) distribution in the interface system, where the lower bound of the integral z = z b is shown by red line. (Right) Divided quadrupole moments (Q yz, Q zz) by the threshold z = z b bring net dipole moments (μ y, μ z) in the integral region z > z b

The integral of quadrupole contributions could be understood without resorting to the arbitrary threshold of z b. This mechanism of χ IQB is related to the infinite summation of oscillating terms. A quadrupole is regarded as a pair of antiparallel dipoles, as illustrated in Fig. 7.6. Thus the sum of all quadrupole contributions becomes equivalent to the infinite summation of a pair of antiparallel dipoles, (μ − μ) + (μ − μ) + (μ − μ) + ⋯, where each pair (μ − μ) corresponds to a quadrupole moment. This infinite summation could be defined on the basis of Abel summability [9],

$$\displaystyle \begin{aligned} (\mu - \mu) + (\mu - \mu) + \cdots = \sum_{n=0}^\infty \mu \: (-1)^n = \lim_{x \to -1+0} \frac{\mu}{1-x} = \frac{\mu}{2},\end{aligned} $$

which yields a net dipole contribution. The above definition of this infinite sum can be obtained by using a proper convergence factor. Such oscillating sum elucidates the χ IQB contribution to the net dipole P I. We will encounter the analogous mechanism in the NaOH aqueous solution surface in Sect. 9.3.

A.2 Levi-Civita Antisymmetric Tensor

The Levi-Civita antisymmetric tensor ε ijk is defined as follows.

$$\displaystyle \begin{aligned} {{\varepsilon }_{ijk}}=\left\{ \begin{array}{*{35}{l}} 1 & \left( ijk= xyz,yzx,zxy \right), \\ -1 & \left( ijk= yxz,zyx,xzy \right), \\ 0 & \left( \text{otherwise} \right). \\ \end{array} \right. {}\end{aligned} $$
(7.132)

This symbol is quite convenient when manipulating various formulas in the vector analysis.

Using the Levi-Civita symbols thus defined, the vector product is represented in the following form,

$$\displaystyle \begin{aligned} \left[ {\boldsymbol{B}} \times {\boldsymbol{C}} \right]_i = \varepsilon _{ijk} B_j C_k. \end{aligned}$$

In this section of Appendix we employ the Einstein’s convention of contraction, and omit the summation symbol \(\sum \) over i, j, or k.Footnote 7 The rotation of a vector is represented in a similar way, \(\left [ \nabla \times {\boldsymbol {C}} \right ]_i = \varepsilon _{ijk} \partial _j C_k\). The scalar triple product is given by \({\boldsymbol {A}} \cdot \left ( {\boldsymbol {B}} \times {\boldsymbol {C}} \right ) = \varepsilon _{ijk} A_i B_j C_k\).

The Levi-Civita tensor satisfies the following contraction formulas,

$$\displaystyle \begin{aligned} \varepsilon _{ijk} \varepsilon _{pqk} &= \delta _{ip} \delta _{jq} - \delta _{iq} \delta _{jp}, {} \end{aligned} $$
(7.133)
$$\displaystyle \begin{aligned} \varepsilon _{ijk} \varepsilon _{pjk} &= 2 \delta _{ip}, {} \end{aligned} $$
(7.134)
$$\displaystyle \begin{aligned} \varepsilon _{ijk} \varepsilon _{ijk} &= 6. {} \end{aligned} $$
(7.135)

Proof

ε ijk in Eq. (7.132) is expressed using a set of orthonormal vectors {e x, e y, e z} as

$$\displaystyle \begin{aligned} \varepsilon_{ijk} = \left| \begin{matrix} ({\boldsymbol{e}}_x \cdot {\boldsymbol{e}}_i ) & ({\boldsymbol{e}}_x \cdot {\boldsymbol{e}}_j ) & ({\boldsymbol{e}}_x \cdot {\boldsymbol{e}}_k ) \\ ({\boldsymbol{e}}_y \cdot {\boldsymbol{e}}_i ) & ({\boldsymbol{e}}_y \cdot {\boldsymbol{e}}_j ) & ({\boldsymbol{e}}_y \cdot {\boldsymbol{e}}_k ) \\ ({\boldsymbol{e}}_z \cdot {\boldsymbol{e}}_i ) & ({\boldsymbol{e}}_z \cdot {\boldsymbol{e}}_j ) & ({\boldsymbol{e}}_z \cdot {\boldsymbol{e}}_k ) \end{matrix} \right| \equiv \left| \; {\boldsymbol{U}}(xyz, ijk) \; \right| . {} \end{aligned} $$
(7.136)

Therefore,

$$\displaystyle \begin{aligned} \varepsilon_{ijk} \varepsilon_{pqr} &= \left| \; {\boldsymbol{U}}(xyz, ijk) \; \right| \cdot \left| \; {\boldsymbol{U}}(xyz,pqr) \; \right| = \left| \; {\boldsymbol{U}}(xyz, ijk)^T \; \right| \cdot \left| \; {\boldsymbol{U}}(xyz, pqr) \; \right|\\ & = \left|\; {\boldsymbol{U}}(ijk, pqr) \; \right| \notag \\ &= \left| \begin{matrix} \delta_{ip} & \delta_{iq} & \delta_{ir} \\ \delta_{jp} & \delta_{jq} & \delta_{jr} \\ \delta_{kp} & \delta_{kq} & \delta_{kr} \end{matrix} \right| \notag \\ &= \delta_{ir} (\delta_{jp} \delta_{kq} - \delta_{jq} \delta_{kp}) - \delta_{jr} (\delta _{ip} \delta_{kq} - \delta_{iq} \delta_{kp}) + \delta_{kr} (\delta_{ip} \delta_{jq} - \delta_{iq} \delta_{jp}) . \end{aligned} $$

Equations (7.133), (7.134), (7.135) are proved by taking the contraction.

$$\displaystyle \begin{aligned} \varepsilon_{ijk} \varepsilon_{pqk} &= \delta_{ik} (\delta_{jp} \delta_{kq} - \delta_{jq} \delta_{kp}) - \delta_{jk} (\delta _{ip} \delta_{kq} - \delta_{iq} \delta_{kp}) + \delta_{kk} (\delta_{ip} \delta_{jq} - \delta_{iq} \delta_{jp}) \notag \\ &= \delta_{iq} \delta_{jp} - \delta_{ip} \delta_{jq} - \delta_{jq} \delta_{ip} + \delta_{jp} \delta_{iq} + 3 (\delta_{ip} \delta_{jq} - \delta_{iq} \delta_{jp}) \notag \\ &= \delta_{ip} \delta_{jq} - \delta_{iq} \delta_{jp} ,\end{aligned} $$
(7.133)
$$\displaystyle \begin{aligned} \varepsilon_{ijk} \varepsilon_{pjk} &= \delta_{ip} \delta_{jj} - \delta_{ij} \delta_{jp} = 3 \delta_{ip} - \delta{ip} = 2 \delta_{ip} ,\end{aligned} $$
(7.134)
$$\displaystyle \begin{aligned} \varepsilon_{ijk} \varepsilon_{ijk} &= 2 \delta_{ii} = 6 .\end{aligned} $$
(7.135)

These Eqs. (7.133), (7.134), (7.135), particularly Eq. (7.133), are extensively utilized in manipulating vector formulas. For example, the vector triple product is rearranged as follows,

$$\displaystyle \begin{aligned} & [ {\boldsymbol{A}} \times ( {\boldsymbol{B}} \times {\boldsymbol{C}} ) ]_i = \varepsilon _{ijk} A_j [ B \times C ]_k = \varepsilon _{ijk} A_j ( \varepsilon _{klm} B_l C_m ) \\ & = \varepsilon _{ijk} \varepsilon _{lmk} A_j B_l C_m = ( \delta _{il} \delta _{jm} - \delta _{im} \delta _{jl} ) A_j B_l C_m = A_j B_i C_j - A_j B_j C_i \\ & =B_i ( {\boldsymbol{A}} \cdot {\boldsymbol{C}}) - C_i ({\boldsymbol{A}} \cdot {\boldsymbol{B}}), \end{aligned} $$

where we have employed the permutation relation, ε klm = ε lmk, and Eq. (7.133) in the above derivation.

________________________________________________________________________________________________ [Problem 7.4] Derive the following formulas (i)–(vi) using the Levi-Civita tensor (see Sect. 7.6.4). (A, B, C, D refer to vectors, and ϕ to a scalar.)

$$\displaystyle \begin{aligned}\begin{array}{r*{20}l} &\text{(i) } && \left( {\boldsymbol{A}}\times {\boldsymbol{B}} \right)\cdot \left( {\boldsymbol{C}}\times {\boldsymbol{D}} \right) =\left( {\boldsymbol{A}}\cdot {\boldsymbol{C}} \right)\left( {\boldsymbol{B}}\cdot {\boldsymbol{D}} \right)-\left( {\boldsymbol{A}}\cdot {\boldsymbol{D}} \right)\left( {\boldsymbol{B}}\cdot {\boldsymbol{C}} \right) \\ &\text{(ii) } && \nabla \times \left( \nabla \times {\boldsymbol{A}} \right)=\nabla \left( \nabla \cdot {\boldsymbol{A}} \right)-{{\nabla }^{2}}{\boldsymbol{A}} \\ &\text{(iii) } && \nabla \cdot \left( \nabla \times {\boldsymbol{A}} \right)=0 \\ &\text{(iv) } && \nabla \times \left( \nabla \phi \right)=0 \\ &\text{(v) } && \nabla \cdot \left( {\boldsymbol{A}}\times {\boldsymbol{B}} \right) = {\boldsymbol{B}}\cdot \left( \nabla \times {\boldsymbol{A}} \right)-{\boldsymbol{A}}\cdot \left( \nabla \times {\boldsymbol{B}} \right) \\ &\text{(vi) } && \nabla \times \left( {\boldsymbol{A}} \times {\boldsymbol{B}} \right) = {\boldsymbol{A}} \left(\nabla \cdot {\boldsymbol{B}} \right) + \left( {\boldsymbol{B}} \cdot \nabla \right) {\boldsymbol{A}} - {\boldsymbol{B}} \left( \nabla \cdot {\boldsymbol{A}} \right) - \left( {\boldsymbol{A}} \cdot \nabla \right) {\boldsymbol{B}} \end{array}\end{aligned} $$

__________________________________________________________________________________

The Levi-Civita tensor is invariant under rotation of the coordinates,

$$\displaystyle \begin{aligned} \mathcal{D}_{ip} \mathcal{D}_{jq} \mathcal{D}_{kr} \: \varepsilon_{pqr} = \varepsilon_{ijk}, {} \end{aligned} $$
(7.137)

where \(\mathcal {D}\) is the rotational matrix in Eq. (3.43). This feature will be utilized in Chap. 8.

Proof

Consider a rotational matrix \({\boldsymbol {\mathcal {D}}}\) that converts a set of orthonormal vectors {e x, e y, e z} to \(\{ {\boldsymbol {e}}_{x^\prime }, {\boldsymbol {e}}_{y^\prime }, {\boldsymbol {e}}_{z^\prime } \}\),

$$\displaystyle \begin{aligned} \begin{pmatrix} {\boldsymbol{e}}_{x^\prime} \\ {\boldsymbol{e}}_{y^\prime} \\ {\boldsymbol{e}}_{z^\prime} \end{pmatrix} = {\boldsymbol{\mathcal{D}}} \begin{pmatrix} {\boldsymbol{e}}_x \\ {\boldsymbol{e}}_y \\ {\boldsymbol{e}}_z \end{pmatrix}. \end{aligned}$$

Then the following relation is proved using the unitary character of \({\boldsymbol {\mathcal {D}}}\) (\(\left | {\boldsymbol {\mathcal {D}}} \right | = 1\)) and Eq. (7.136),

$$\displaystyle \begin{aligned} \varepsilon_{ijk} = \left| \; {\boldsymbol{U}} (xyz, ijk) \; \right| = \left| {\boldsymbol{\mathcal{D}}}^T \; {\boldsymbol{U}} (x^\prime y^\prime z^\prime, ijk) \; \right| = \left| \; {\boldsymbol{U}} (x^\prime y^\prime z^\prime, ijk) \; \right|. \end{aligned}$$

Suppose that pqr denote x , y , z while ijk denote x, y, z, the following equation is derived.

$$\displaystyle \begin{aligned} \mathcal{D}_{ip} \mathcal{D}_{jq} \mathcal{D}_{kr} \varepsilon_{pqr} = \mathcal{D}_{ip} \mathcal{D}_{jq} \mathcal{D}_{kr} \left| \; {\boldsymbol{U}} (x^\prime y^\prime z^\prime, pqr) \; \right| = \left| \; {\boldsymbol{U}} (x^\prime y^\prime z^\prime, ijk) \; \right|\notag \\ = \left| \; {\boldsymbol{U}} (xyz, ijk) \; \right| = \varepsilon_{ijk}.\end{aligned} $$
(7.137)

A.3 Definition of Bulk Polarization

In Chap. 7 the bulk polarization \({\boldsymbol {P}}^{\text{B}}_G\) is defined by Eq. (7.36),

$$\displaystyle \begin{aligned} &P_{G,p}^{\mathrm{B}} = i \int_{-\infty }^0 dz\sum_{q,r,s} \left\{ \chi _{pqrs}^{\mathrm{D1},\beta } (\Omega, \omega_1, \omega_2) k_{T,s}^\beta (\omega_1) + \chi _{pqrs}^{\mathrm{D2},\beta} (\Omega, \omega_1, \omega_2) k_{T,s}^\beta (\omega_2) \right. \notag \\ & \left. \qquad -\chi _{pqrs}^{\mathrm{Q},\beta} (\Omega, \omega_1, \omega_2) \left( k_{T,s}^\beta (\omega_1) + k_{T,s}^\beta (\omega_2) \right) \right\} \notag \\ & \qquad \cdot f_p^\beta (\Omega) f_q^\beta (\omega_1) f_r^\beta (\omega_2) L_{I,q} (\omega_1) L_{I,r} (\omega_2) E_{I,q}^\alpha (\omega_1) E_{I,r}^\alpha (\omega_2) \notag \\ & \qquad \cdot \exp \left[ i \left( k_{T,z}^\beta (\omega_1) + k_{T,z}^\beta (\omega_2) - k_{G,z}^\beta (\Omega) \right) z \right],\end{aligned} $$
(7.36)

which is consistent to Refs. [21] and [17], while a slightly different expression \({\boldsymbol {P}}{{ }_G^{\text{B}}}^\prime \) is found in Refs. [11] and [5]. In this Appendix, we clarify the difference between the two expressions.

Some other literature [5, 11] employs a different expression, \({\boldsymbol {P}}{{ }_{G}^{\mathrm {B}}}^\prime \), for the bulk polarization,

$$\displaystyle \begin{aligned} & P{{}_{G,p}^{\mathrm{B}}}^\prime = i \int_{-\infty }^0 dz \sum_{q,r,s} \left\{ \chi _{pqrs}^{\mathrm{D1},\beta } (\Omega, \omega_1, \omega_2) k_{T,s}^{\beta }(\omega_1) + \chi _{pqrs}^{\mathrm{D2},\beta }(\Omega, \omega_1, \omega_2) k_{T,s}^{\beta }(\omega_2) \right. \notag \\ & \left. \qquad -\chi _{pqrs}^{\mathrm{Q},\beta }(\Omega, \omega_1, \omega_2) k_{G,s}^{\beta }(\Omega ) \right\} \notag \\ & \qquad \cdot f_p^\beta (\Omega ) f_q^\beta (\omega_1) f_r^\beta (\omega_2) L_{I,q} (\omega_1) L_{I,r} (\omega_2) E_{I,q}^\alpha (\omega_1) E_{I,r}^\alpha (\omega_2) \notag \\ & \qquad \cdot \exp \left[ i \left( k_{T,z}^\beta (\omega_1) + k_{T,z}^\beta (\omega_2) - k_{G,z}^\beta (\Omega ) \right) z \right]. {} \end{aligned} $$
(7.138)

We notice a slight but significant difference; the third term of the integrand in Eq. (7.36) is \(-\chi _{pqrs}^{Q,\beta } (\Omega , \omega _1, \omega _2) \left ( k_{T,s}^\beta (\omega _1) + k_{T,s}^\beta (\omega _2) \right )\), while that in Eq. (7.138) is \(-\chi _{pqrs}^{Q,\beta } (\Omega , \omega _1, \omega _2) k_{G,s}^\beta (\Omega )\).

We could interpret that \({\boldsymbol {P}}^{\mathrm {B} \prime }_G\) in Eq. (7.138) involves both the bulk polarization \({\boldsymbol {P}}^{\mathrm {B}}_G\) and a part of interfacial polarization attributed to χ IQB. Equation (7.28) shows that the part of interfacial polarization P I attributed to χ IQB is

$$\displaystyle \begin{aligned} P_p^{\mathrm{IQB}} &= \sum_{q,r} \chi _{pqr}^{\mathrm{IQB}} (\Omega, \omega_1, \omega_2) L_{I,q} (\omega_1) L_{I,r}(\omega_2) E_{I,q}^\alpha (\omega_1) E_{I,r}^\alpha (\omega_2) \notag \\ & = \sum_{q,r} \chi _{pqrz}^{\mathrm{Q},\beta } (\Omega, \omega_1, \omega_2) f_p^\beta (\Omega ) f_q^\beta (\omega_1) f_r^\beta (\omega_2) L_{I,q} (\omega_1) L_{I,r} (\omega_2) E_{I,q}^\alpha (\omega_1) E_{I,r}^\alpha (\omega_2) \notag \\ & = i \int_{-\infty }^{0} dz\ \sum_{q,r,s}{\ } \delta_{sz} \left( k_{T,s}^\beta (\omega_1) + k_{T,s}^\beta (\omega_2) -k_{G,s}^\beta (\Omega ) \right) \chi _{pqrz}^{Q,\beta } (\Omega, \omega_1, \omega_2) \notag \\ & \qquad \cdot f_p^\beta (\Omega ) f_q^\beta (\omega_1) f_r^\beta (\omega_2) L_{I,q} (\omega_1) L_{I,r} (\omega_2) E_{I,q}^\alpha (\omega_1) E_{I,r}^\alpha (\omega_2) \notag \\ & \qquad \cdot \exp \left[ i \left( k_{T,z}^\beta (\omega_1) + k_{T,z}^\beta (\omega_2) - k_{G,z}^\beta (\Omega ) \right) z \right], {} \end{aligned} $$
(7.139)

where the form of χ IQB in Eq. (7.30) has been adopted in the above formula. Therefore, we can readily see the following relation,

$$\displaystyle \begin{aligned} P_{G,p}^{\mathrm{B}} + P_p^{\mathrm{IQB}} = P{{}_{G,p}^{\mathrm{B}}}^\prime . {} \end{aligned} $$
(7.140)

Although either definition for the bulk polarization could be used in principle, we recommend \({\boldsymbol {P}}_G^{\mathrm {B}}\) in Eq. (7.36) to describe the bulk polarization for the following reasons. First, \({\boldsymbol {P}}_G^{\mathrm {B}}\) is a well defined quantity with respect to the choice of origin as described in Sect. 7.4, and can be separately detected from the other terms by experimental measurements. Second, \({\boldsymbol {P}}_G^{\mathrm {B}}\) allows for distinguishing χ IQB and χ B. We have argued in Chap. 7 and Figure 7.5 that χ IQB and χ B have different physical meanings and different dependence on the optical geometry. The role of χ IQB has been increasingly recognized in the SFG spectroscopy [12, 13]. The former definition is convenient to examine the effects of χ IQB and χ B separately.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morita, A. (2018). Quadrupole Contributions from Interface and Bulk. In: Theory of Sum Frequency Generation Spectroscopy. Lecture Notes in Chemistry, vol 97. Springer, Singapore. https://doi.org/10.1007/978-981-13-1607-4_7

Download citation

Publish with us

Policies and ethics