Skip to main content

Convolutional Neural Network-Based Human Identification Using Outer Ear Images

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 817))

Abstract

This paper presents a deep learning approach for ear localization and recognition. The comparable complexity between human outer ear and face in terms of its uniqueness and permanence has increased interest in the use of ear as a biometric. But similar to face recognition, it poses challenges such as illumination, contrast, rotation, scale, and pose variation. Most of the techniques used for ear biometric authentication are based on traditional image processing techniques or handcrafted ensemble features. Owing to extensive work in the field of computer vision using convolutional neural networks (CNNs) and histogram of oriented gradients (HOG), the feasibility of deep neural networks (DNNs) in the field of ear biometrics has been explored in this research paper. A framework for ear localization and recognition is proposed that aims to reduce the pipeline for a biometric recognition system. The proposed framework uses HOG with support vector machines (SVMs) for ear localization and CNN for ear recognition. CNNs combine feature extraction and ear recognition tasks into one network with an aim to resolve issues such as variations in illumination, contrast, rotation, scale, and pose. The feasibility of the proposed technique has been evaluated on USTB III database. This work demonstrates 97.9% average recognition accuracy using CNNs without any image preprocessing, which shows that the proposed approach is promising in the field of biometric recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/. Software available from tensorflow.org

  2. Anwar, A.S., Ghany, K.K.A., Elmahdy, H.: Human ear recognition using geometrical features extraction. Procedia Comput. Sci. 65, 529–537 (2015)

    Article  Google Scholar 

  3. Bargal, S.A., Welles, A., Chan, C.R., Howes, S., Sclaroff, S., Ragan, E., Johnson, C., Gill, C.: Image-based ear biometric smartphone app for patient identification in field settings. VISAPP 3, 171–179 (2015)

    Google Scholar 

  4. Bhanu, B., Chen, H.: Human ear recognition by computer. Springer Science & Business Media (2008)

    Google Scholar 

  5. Biometrics, D.: Ergo Ear Biometric App: Unlock Your Phone with Your Ear. http://www.descartesbiometrics.com/ergo-app/ (2017). Accessed February 24, 2017

  6. Burge, M., Burger, W.: Ear biometrics in computer vision. In: 15th International Conference of Pattern Recognition (ICPR) pp. 826–830 (2000)

    Google Scholar 

  7. Chan, T.S., Kumar, A.: Reliable ear identification using 2-d quadrature filters. Patt. Recogn. Lett. 33(14), 1870–1881 (2012)

    Article  Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  10. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    Google Scholar 

  11. Galdmez, P.L., Raveane, W., Arrieta, A.G.: A brief review of the ear recognition process using deep neural networks. J. Appl. Logic (2016). https://doi.org/10.1016/j.jal.2016.11.014. http://www.sciencedirect.com/science/article/pii/S1570868316300684

    Article  MathSciNet  Google Scholar 

  12. Ghoualmi, L., Draa, A., Chikhi, S.: An ear biometric system based on artificial bees and the scale invariant feature transform. Exp. Syst. Appl. 57, 49–61 (2016)

    Article  Google Scholar 

  13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. Aistats 9, 249–256 (2010)

    Google Scholar 

  14. Hai-Long, Z., Zhi-Chun, M.: Combining wavelet transform and orthogonal centroid algorithm for ear recognition. In: 2nd IEEE International Conference on Computer Science and Information Technology, 2009. ICCSIT 2009, pp. 228–231. IEEE (2009)

    Google Scholar 

  15. Hanmandlu, M., et al.: Robust ear based authentication using local principal independent components. Exp. Syst. Appl. 40(16), 6478–6490 (2013)

    Article  Google Scholar 

  16. Hurley, D.J., Nixon, M.S., Carter, J.N.: Force field feature extraction for ear biometrics. Comput. Vis. Image Understand. 98(3), 491–512 (2005)

    Article  Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 (2015)

  18. Jamil, N., AlMisreb, A., Halin, A.A.: Illumination-invariant ear authentication. Procedia Comput. Sci. 42, 271–278 (2014)

    Article  Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Kumar, A., Chan, T.S.T.: Robust ear identification using sparse representation of local texture descriptors. Pattern Recogn. 46(1), 73–85 (2013)

    Article  Google Scholar 

  21. Kumar, A., Wu, C.: Automated human identification using ear imaging. Pattern Recogn. 45(3), 956–968 (2012)

    Article  Google Scholar 

  22. Kumar, A., Zhang, D.: Ear authentication using log-gabor wavelets. In: Defense and Security Symposium on International Society for Optics and Photonics, p. 65,390A (2007)

    Google Scholar 

  23. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handbook Brain Theor. Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  24. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Computat. 1(4), 541–551 (1989)

    Article  Google Scholar 

  25. Liu, Y., Zhang, B., Zhang, D.: Ear-parotic face angle: a unique feature for 3d ear recognition. Pattern Recogn. Lett. 53, 9–15 (2015)

    Article  Google Scholar 

  26. Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of exemplar-svms for object detection and beyond. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 89–96. IEEE (2011)

    Google Scholar 

  27. Omara, I., Li, F., Zhang, H., Zuo, W.: A novel geometric feature extraction method for ear recognition. Exp. Syst. Appl. 65, 127–135 (2016)

    Article  Google Scholar 

  28. Prakash, S., Gupta, P.: A rotation and scale invariant technique for ear detection in 3d. Pattern Recogn. Lett. 33(14), 1924–1931 (2012)

    Article  Google Scholar 

  29. Prakash, S., Gupta, P.: An efficient ear recognition technique invariant to illumination and pose. Telecommun. Syst. 1–14 (2013)

    Google Scholar 

  30. Prakash, S., Gupta, P.: Human recognition using 3d ear images. Neurocomputing 140, 317–325 (2014)

    Article  Google Scholar 

  31. Prakash, S., Jayaraman, U., Gupta, P.: A skin-color and template based technique for automatic ear detection. In: Seventh International Conference on Advances in Pattern Recognition, 2009. ICAPR’09, pp. 213–216. IEEE (2009)

    Google Scholar 

  32. Sana, A., Gupta, P., Purkait, R.: Ear biometrics: A new approach. In: Advances in Pattern Recognition, pp. 46–50. World Scientific (2007)

    Google Scholar 

  33. Sánchez, D., Melin, P.: Modular neural network with fuzzy integration and its optimization using genetic algorithms for human recognition based on iris, ear and voice biometrics. In: Soft Computing for Recognition Based on Biometrics, pp. 85–102. Springer (2010)

    Google Scholar 

  34. Shu, C., Ding, X., Fang, C.: Histogram of the oriented gradient for face recognition. Tsinghua Sci. Technol. 16(2), 216–224 (2011)

    Article  Google Scholar 

  35. SigOpt: Sigopt—Amplifies your Research. https://www.sigopt.com/ (2017)

  36. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, p. I. IEEE (2001)

    Google Scholar 

  38. Wang, J., Clark, S.C., Liu, E., Frazier, P.I.: Parallel Bayesian Global Optimization of Expensive Functions. arXiv:1602.05149 (2016)

  39. Wang, Y., Mu, Z.c., Zeng, H.: Block-based and multi-resolution methods for ear recognition using wavelet transform and uniform local binary patterns. In: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  40. Xie, Z., Mu, Z.: Ear recognition using lle and idlle algorithm. In: 19th International Conference on Pattern Recognition, 2008. ICPR 2008. pp. 1–4. IEEE (2008)

    Google Scholar 

  41. Yan, P., Bowyer, K.: Empirical evaluation of advanced ear biometrics. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2005. CVPR Workshops, pp. 41–41. IEEE (2005)

    Google Scholar 

  42. Yuan, L., Chun Mu, Z.: Ear recognition based on local information fusion. Pattern Recogn. Lett. 33(2), 182–190 (2012)

    Article  Google Scholar 

  43. Yuan, L., Chun Mu, Z.: Ear recognition based on 2d images. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, 2007. BTAS 2007, pp. 1–5. IEEE (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan K. Ajmera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinha, H., Manekar, R., Sinha, Y., Ajmera, P.K. (2019). Convolutional Neural Network-Based Human Identification Using Outer Ear Images. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 817. Springer, Singapore. https://doi.org/10.1007/978-981-13-1595-4_56

Download citation

Publish with us

Policies and ethics