Skip to main content

Linking Brainstem Cholinergic Input to Thalamocortical Circuitry

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 816))

Abstract

Building computational models of brain parts at realistic scale is critical for prediction and treatment of neurological and psychiatric disorders and trauma. The contribution of this paper is the use of the Runge–Kutta–Fehlberg method to incorporate a kinetic model of synaptic transmission mediated by the neurotransmitter Acetylcholine (ACh) into a neural mass model of the thalamocortical circuitry, thereby imitating brainstem inputs to the thalamus. The result is a model of the thalamocortical oscillations as observed in electroencephalogram (EEG), firstly by introducing ACh into the existing model and secondly by varying synaptic parameters of the cholinergic pathway. Results show that embedding cholinergic input to the existing thalamocortical model leads to a change in postsynaptic voltages in the Lateral Geniculate Nucleus, as compared to the postsynaptic voltages without cholinergic input. In addition, it is observed that varying the cholinergic input to the Thalamic Reticular Nucleus (TRN) cell population around basal values deals with bifurcation in the model behaviour, implicating the crucial role of brainstem inputs to the TRN. This may underpin neural correlates of visuomotor deficiencies, which is a potential biomarker for early detection of Alzheimer’s disease (AD).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Armstrong, R.A., Syed, A.B.: Alzheimer’s disease and the eye. Opthalmology and Physiol. Opt. 16(1), S2–S8 (1996)

    Article  Google Scholar 

  2. Beierlein, M.: Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons. J. Physiol. 592(19), 4137–4145 (2014)

    Article  Google Scholar 

  3. Bhattacharya, B.S., Bond, T.P., Hare, L.O., Turner, D., Durrant, S.J.: Causal role of thalamic interneurons in brain state transitions: a study using a neural mass model implementing synaptic kinetics. Front. Comput. Neurosci. 10, 115 (2016)

    Article  Google Scholar 

  4. Bhattacharya, B.S., Coyle, D., Maguire, L.P., Stewart, J.: Kinetic modelling of synaptic functions in the alpha rhythm neural mass model. In: Villa, A.E.P., Duch, W., Erdi, P., Masulli, F., Palm, G. (eds.) Lecture Notes in Computer Science, Volume 7552 Part I, pp. 645–652. Springer, Berlin (2012)

    Chapter  Google Scholar 

  5. Bhattacharya, B.S., Coyle, D., Maguire, L.P.: Assessing alpha band event related synchronisation/desynchronization with a mutually coupled thalamo-cortical circuitry model. J. Univ. Comput. Sci. 18(13), 1888–1904 (2012)

    Google Scholar 

  6. Bhattacharya, B.S.: Implementing the cellular mechanisms of the synaptic transmission in a neural mass model of the thalamocortical circuitry. Front. Comput. Neurosci. 7, 81 (2013)

    Article  Google Scholar 

  7. Bressler, S.L., Menon, V.: Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 287–290 (2010)

    Article  Google Scholar 

  8. David, O., Friston, K.J.: A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20, 1743–1755 (2003)

    Article  Google Scholar 

  9. Destexhe, A., Mainen, Z., Sejnowski, T.: An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput. 6, 14–18 (1994)

    Article  Google Scholar 

  10. Francis, P.T., Palmer, A.M., Snape, M., Wilcock, G.K.: The cholinergic hypothesis of Alzheimer’s Disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137–147 (1999)

    Article  Google Scholar 

  11. Goldman, W.P., Baty, J.D., Buckles, V.D., Sahrmann, S., Morris, J.C.: Motor dysfunction in mildly demented AD individuals without extrapyramidal signs. Neurology 53(5), 956–962 (1999)

    Article  Google Scholar 

  12. Golomb, D., Wang, X.-J., Rinzel, J.: Propagation of spindle waves in a thalamic slice model. J. Neurophysiol. 75(2), 750–769 (1996)

    Article  Google Scholar 

  13. Guillery, R.W., Feig, S.L., Lozsádi, D.A.: Paying attention to the thalamic reticular nucleus. TINS 21(1), 28–32 (1998)

    Google Scholar 

  14. Guillery, R.W.: Branching thalamic afferents link action and perception. J. Neurophysiol. 90(2), 539–548 (2003)

    Article  Google Scholar 

  15. Hasselmo, M.E., Schnell, E.: Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA 1: computational modelling and brain slice physiology. J. Neurosci. 14(6), 3898–3914 (1994)

    Article  Google Scholar 

  16. Kar, S., Slowinkowski, P.M., Westaway, D., Mount, H.T.J.: Interactions between β-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J. Psychiatry Neurosci. 29, 427–441 (2004)

    Google Scholar 

  17. Kasa, P., Rakonczay, Z., Gulya, K.: The cholinergic system in Alzheimer’s disease. Prog. Neurobiol. 52, 511–535 (1997)

    Article  Google Scholar 

  18. Liljenström, H.: Mesoscopic brain dynamics. Scholarpedia 7(9), 4601 (2012)

    Article  Google Scholar 

  19. Macpherson, K., Weston, P.S.J., Nicholas, J.M., Donnachie, E.R., Ariti, C., Crutch, S.J., Fox, N.C., Henley, S.M.D.: Visuomotor integration in presymptomatic familial Alzheimer’s Disease. Poster Presentations P2-458, Cross Mark, p. 815 (2017)

    Google Scholar 

  20. McDowall, J.: Acetylcholine Receptors. Interpro, RCSB Protein Data Bank (PDB) (2005)

    Google Scholar 

  21. Miftakhov, R.N., Christensen, J.: A physiochemical basis of synaptic transmission in the myenteric plexus. In: Poznanski, R.R. (ed.) Biophysical Neural Networks: Foundations of Integrative Neuroscience, pp. 147–176. Mary Anne Liebert, New York (2007)

    Google Scholar 

  22. Neymotin, S.A., Lee, H., Park, E., Fenton, A.A., Lytton, W.W.: Emergence of physiological oscillation frequencies in a computer model of neocortex. Front. Comput. Neurosci. 5, 19 (2011)

    Article  Google Scholar 

  23. O’Leary, T.P., Robertson, A., Chipman, P.H., Rafuse, V.F., Brown, R.E.: Motor function deficits in the 12 month-old female 5xFAD mouse model of Alzheimer’s disease. Behav. Brain Res. (2017) (Elsevier)

    Google Scholar 

  24. Sherman, S.M.: Thalamus. Scholarpedia 1(9), 1583 (2006)

    Article  Google Scholar 

  25. Solomons, H.: Vision and dementia. Clinical, pp. 25–28 (2005)

    Google Scholar 

  26. Steriade, M., McCarley, R.W.: Brain Control of Wakefulness and Sleep, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  27. Suffczynski, P., Kalitzin, S., Silva, F.L.D.: Dynamics of non-convulsive epileptic phenomena modelled by a bistable neuronal network. Neuroscience 126, 467–484 (2004)

    Article  Google Scholar 

  28. Tippett, W.J., Sergio, L.E.: Visuomotor integration is impaired in early stage Alzheimer’s Disease. Brain Res. 1102, 92–102 (2006)

    Article  Google Scholar 

  29. Van Horn, S.C., Erisir, A., Sherman, S.M.: Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J. Comp. Neurol. 416, 509–520 (2000)

    Article  Google Scholar 

  30. Venkatraman, A., Edlow, B.L., Immordino-Yang, M.H.: The brainstem in emotion: a review. Front. Neuroanat. 11, 15 (2017)

    Article  Google Scholar 

  31. Wang, X.-J., Golomb, D., Rinzel, J.: Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proc. Natl. Acad. Sci. U.S.A. 92, 5577–5581 (1995)

    Article  Google Scholar 

  32. Zavaglia, M., Astolfi, L., Babiloni, F., Ursino, M.: A model of rhythm generation and functional connectivity during a simple motor task: preliminary validation with real scalp EEG data. Int. J. Bioelectromagnetism 10(1), 68–75 (2008)

    Google Scholar 

Download references

Acknowledgements

We would like to convey our sincere thanks and gratitude to Dr Neil Buckley of Department of Mathematics and Computer Science, Liverpool Hope University, UK, for his active help during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhuleena Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dasgupta, M., Bhattacharya, B.S., Nagar, A. (2019). Linking Brainstem Cholinergic Input to Thalamocortical Circuitry. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 816. Springer, Singapore. https://doi.org/10.1007/978-981-13-1592-3_29

Download citation

Publish with us

Policies and ethics