Skip to main content

Characterization of Extracellular Proteins to Explore Their Role in Bio-Flocculation for Harvesting Algal Biomass for Wastewater Treatment

  • Chapter
  • First Online:
Book cover The Role of Microalgae in Wastewater Treatment

Abstract

Bioprocess technology aims to production of high-value end products from natural materials in an eco-friendly method. While doing so it can also solve environmental and industrial problems in addition to product yield. Bio-flocculation is a dynamic phase in most of the bioprocess such as wastewater treatment, harvesting of biofuels, bioremediation of activated sludge, and yielding of bio-materials from a bioreactor. In algae-based bioprocess technology, harvesting of algal biomass is enormously energy-intensive step. This alone is the main constraint on commercial development of numerous conceivable methodologies of environmental management through algal systems worldwide.

Several strategies are currently investigated in order to enhance auto-flocculation in a regulated way to avoid energy demanding centrifugation and successive processing. A successful master plan in this domain would lead to potentially low-cost harvesting technique. Some approaches that are under scrutiny involve co-culture of bio-flocculent producing organisms. However, the bottleneck of biomass harvesting at minimal cost is yet to be circumvented. In this study, the flocculation enhancing proteins of Saccharomyces cerevisiae ie, Flo 1, Flo 5 and Flo 9 have been analyzed using computation biology tools to evaluate their structural and functional characteristics to assess dynamic behavior and flocculating properties. It is followed by a dry run of molecular biology intervention. Bioinformatics simulations such as molecular dynamics, normal mode analysis, characterization of protein active sites, and protein network interaction are some low cost yet efficient tools that are used in this chapter for their near precise prediction on a protein behavior. This study is novel and aids to the ongoing brainstorming of the bioprocess biotechnology fraternity to establish an economical harvesting protocol for algal biomass for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almaraz-Delgado AL, Flores-Uribe J, Perez-Espana VH, Salgado-Manjarrez E, Badillo-Corona JA (2014) Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express 4:57

    Article  CAS  Google Scholar 

  2. Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15(5):586–592

    Article  CAS  Google Scholar 

  3. Baker NA, Sept D, Joseph S, Holst MJ, Andrew McCammon J (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98(18):10037–10041

    Article  CAS  Google Scholar 

  4. Bauer FF, Govender P, Bester MC (2010) Yeast flocculation and its biotechnological relevance. Appl Microbiol Biotechnol 88:31–39

    Article  CAS  Google Scholar 

  5. Ben-nun-Shaul O, Bronfeld H, Reshef D, Schueler-Furman O, Oppenheim A (2009) The SV40 capsid is stabilized by a conserved pentapeptide hinge of the major capsid protein VP1. J Mol Biol 386(5):1382–1391

    Article  CAS  Google Scholar 

  6. Boelee NC, Janssen M, Temmink H, Taparaviciute L, Khiewwijit R, Janoska A, Buisman CJN, Wijffels RH (2014) The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J Appl Phycol 26(3):1439–1452

    Google Scholar 

  7. Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2014) Balancing the organic load and light supply in symbiotic microalgal-bacterial biofilm reactors treating synthetic municipal wastewater. Ecol Eng 64:213–221

    Article  Google Scholar 

  8. Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45(18):5925–5933

    Article  CAS  Google Scholar 

  9. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4(1):1–13

    Article  CAS  Google Scholar 

  10. Brennan L, Philip O (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  11. Buan NR, Escalante-Semerena JC (2005) Computer-assisted docking of flavodoxin with the ATP: Co (I) rrinoid adenosyltransferase (CobA) enzyme reveals residues critical for protein-protein interactions but not for catalysis. J Biol Chem 280(49):40948–40956

    Article  CAS  Google Scholar 

  12. Cao M, Fu Y, Guo Y, Pan J (2009) Chlamydomonas (chlorophyceae) colony PCR. Protoplasma 235(1):107–110

    Article  CAS  Google Scholar 

  13. Chen VB, Bryan Arendall W, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2009) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(1):12–21

    Article  CAS  Google Scholar 

  14. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  CAS  Google Scholar 

  15. Claro FB, Rijsbrack K, Soares EV (2007) Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress. J Appl Microbiol 102(3):693–700

    Article  CAS  Google Scholar 

  16. Cunha AF, Missawa SK, Gomes LH, Reis SF, Pereira GA (2006) Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production. FEMS Yeast Res 6(2):280–287

    Article  CAS  Google Scholar 

  17. Davis ME, Andrew McCammon J (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 90(3):509–521

    Article  CAS  Google Scholar 

  18. Debnath, S., & Addya, S. (2015). In-silico modelling of SERAC1: protein involved in a developmental neural disorder MEGDEL syndrome characterized by 3-methyl glutaconic aciduria type IV with sensory-neural deafness, encephalopathy and Leigh-like syndrome. Int J Dev Neurosci, 47(Pt A):1–2

    Google Scholar 

  19. Debnath S, Addya S (2014) Structural basis for heterogeneous phenotype of ERG11 dependent azole resistance in C. albicans clinical isolates. Springerplus 3(1):660

    Article  CAS  Google Scholar 

  20. Debnath S, Addya S (2015) Mis-sesnse mutations in Tafazzin (TAZ) that escort to mild clinical symptoms of Barth syndrome is owed to the minimal inhibitory effect of the mutations on the enzyme function: in-silico evidence. Interdiscip Sci Comput Life Sci 7(1):21

    Article  CAS  Google Scholar 

  21. DeLano WL (2002) The PyMOL molecular graphics system

    Google Scholar 

  22. Díaz-Moreno I, Hulsker R, Skubak P, Foerster JM, Cavazzini D, Finiguerra MG, Díaz-Quintana A et al (2014) The dynamic complex of cytochrome c 6 and cytochrome f studied with paramagnetic NMR spectroscopy. Biochim Biophys Acta (BBA)-Bioenerg 1837(8):1305–1315

    Article  CAS  Google Scholar 

  23. Dobbins SE, Lesk VI, Sternberg MJE (2008) Insights into protein flexibility: the relationship between normal modes and conformational change upon protein–protein docking. Proc Natl Acad Sci 105(30):10390–10395

    Article  CAS  Google Scholar 

  24. Domingues L, Vicente AA, Lima N, Teixeira JA (2000a) Applications of yeast flocculation in biotechnological processes. Biotechnol Bioprocess Eng 5:288–305

    Article  CAS  Google Scholar 

  25. Domingues L, Lima N, Teixeira JA (2000b) Contamination of a high-cell-density continuous bioreactor. Biotechnol Bioeng 68:584–587

    Article  CAS  Google Scholar 

  26. El-Kirat-Chatel S, Beaussart A, Vincent SP, Flos MA, Hols P, Lipke PN, Dufrêne YF (2015) Forces in yeast flocculation. Nanoscale 7(5):1760–1767

    Article  CAS  Google Scholar 

  27. Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18

    Article  CAS  Google Scholar 

  28. Fenwick RB, van den Bedem H, Fraser JS, Wright PE (2014) Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc Natl Acad Sci 111(4):E445–E454

    Article  CAS  Google Scholar 

  29. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7(2):152–158

    Article  CAS  Google Scholar 

  30. Gonzalez-Fernandez C, Ballesteros M (2013) Microalgae autoflocculation: an alternative to highenergy consuming harvesting methods. J Appl Phycol 25:991–999

    Article  CAS  Google Scholar 

  31. Goossens KVY, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen L, Sebastiaan E, Mulders V et al (2015) Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. MBio 6(2):e00427–e00415

    Article  CAS  Google Scholar 

  32. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052

    Article  CAS  Google Scholar 

  33. Gressel J, van der Vlugt CJB, Bergmans HEN (2013) Environmental risks of large scale cultivation of microalgae: mitigation of spills. Algal Res 2:286–298

    Article  Google Scholar 

  34. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  35. Gultom SO, Hu B (2013) Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 6:5921–5939

    Article  Google Scholar 

  36. Guo B, Styles CA, Feng Q, Fink G (2000) A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proc Natl Acad Sci U S A 97:12158–12163

    Article  CAS  Google Scholar 

  37. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  38. He DM, Qian KX, Shen GF, Zhang ZF, Li YN et al (2007) Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf B Biointerfaces 55:26–30

    Article  CAS  Google Scholar 

  39. Janga SC, Diaz-Mejia JJ, Moreno-Hagelsieb G (2010) Network-based function prediction and interactomics: the case for metabolic enzymes. Metab Eng 13:1–10

    Article  CAS  Google Scholar 

  40. Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82:393–412

    Article  CAS  Google Scholar 

  41. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(suppl_2):W5–W9

    Article  CAS  Google Scholar 

  42. Karimi K, Zamani A (2013) Mucor indicus: biology and industrial application perspectives: a review. Biotechnol Adv 31:466–481

    Article  CAS  Google Scholar 

  43. Kaya D, Dilek FB, Goekcay CF (2007) Reuse of lagoon effluents in agriculture by post-treatment in a step feed dual treatment process. Desalination 215:29–36

    Article  CAS  Google Scholar 

  44. Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Article  Google Scholar 

  45. Kida K, Yamadaki M, Asno S, Nakata T, Sonoda Y (1989) The effect of aeration on stability of continuous ethanol fermentation by a flocculating yeast. J Ferment Bioeng 68(107–111):14

    Google Scholar 

  46. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci 87(3):1228–1232

    Article  CAS  Google Scholar 

  47. Leach AR (2001) Molecular Modeling: principles and applications, 2nd edn. Pearson Education EMA, Sussex

    Google Scholar 

  48. Lee AK, Lewis DM, Ashman PJ (2013) Harvesting of marine microalgae by electroflocculation: the energetics, plant design, and economics. Appl Energy 108:45–53

    Google Scholar 

  49. Lee J, Cho DH, Ramanan R, Kim BH, Oh HM et al (2013) Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour Technol 131:195–201

    Article  CAS  Google Scholar 

  50. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  51. Li Q, Zhao XQ, Chang AK, Zhang QM, Bai FW (2012) Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng 14:1–8

    Article  CAS  Google Scholar 

  52. Li T, Lin GY, Podola B, Melkonian M (2015) Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. J Hazard Mater 297:112–118

    Article  CAS  Google Scholar 

  53. Machado MD, Santos MSF, Gouveia C, Soares HMVM, Soares EV (2008) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99:2107–2115

    Article  CAS  Google Scholar 

  54. Manheim D, Nelson Y (2013) Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production. Environ Prog Sustain Energy 32:946–954

    Article  CAS  Google Scholar 

  55. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5(3):402–412

    Article  CAS  Google Scholar 

  56. Mason LB, Amrhein C, Goodson CC, Matsumoto MR, Anderson MA (2005) Reducing sediment and phosphorus in tributary waters with alum and polyacrylamide. J Environ Qual 34:1998–2004

    Article  CAS  Google Scholar 

  57. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  58. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100:438–442

    Article  CAS  Google Scholar 

  59. Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A (2010) Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Biotechnol Adv 28(6):747–756

    Article  CAS  Google Scholar 

  60. Miki BLA, Poon NH, James AP, Seligy VL (1982) Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol 150:878–889

    CAS  Google Scholar 

  61. Milledge J, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178

    Article  Google Scholar 

  62. Miranda AF, Ramkumar N, Andriotis C, Höltkemeier T, Yasmin A, Rochfort S, Wlodkowic D et al (2017) Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels 10(1):120

    Article  CAS  Google Scholar 

  63. Mulders SEV, Christianen E, Saerens SMG, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein familymediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

    Article  CAS  Google Scholar 

  64. Muradov N (2014) Liberating energy from carbon: introduction to decarbonization. Springer, New York/Heidelberg/Dordrecht/London

    Book  Google Scholar 

  65. Muradov N, Taha M, Miranda AF, Kadali K, Gujar A et al (2014) Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels 7:1–17

    Article  CAS  Google Scholar 

  66. Nazim M, Taha M, Miranda AF, Wrede D, Kadali K, Gujar A, Stevenson T, Ball AS, Mouradov A (2015) Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol Biofuels 8:24

    Article  CAS  Google Scholar 

  67. Nichols ES, Swift RV, Amaro RE (2012) Rational prediction with molecular dynamics for hit identification. Curr Top Med Chem 12(18):2002–2012

    Article  CAS  Google Scholar 

  68. Nonklang S, Ano A, Abdel-Banat BM, Saito Y, Hoshida H, Akada R (2009) Construction of flocculent Kluyveromyces marxianus strains suitable for high-temperature ethanol fermentation. Biosci Biotechnol Biochem 73(5):1090–1095

    Article  CAS  Google Scholar 

  69. Oswald JW, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122:73–105

    Google Scholar 

  70. Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH, Kwon GS, Yoon BD (2001) mHarvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 23(15):1229–1234

    Article  CAS  Google Scholar 

  71. Patel JK, Alex Speers R, Lake JC (2011) Colloidal examination of Worts associated with premature yeast flocculation. J Am Soc Brew Chem 69(2):81

    CAS  Google Scholar 

  72. Pattin KA, Moore JH (2009) Role for protein-protein interaction databases in human genetics. Expert Rev Proteomics 6:647–659

    Article  CAS  Google Scholar 

  73. Pires J, Alvim-Ferraz M, Martins F, Simoes M (2013) Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut Res 20:5096–5105

    Article  CAS  Google Scholar 

  74. Powell RJ, Hill RT (2013) Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp strain RP1137. Appl Environ Microbiol 79:6093–6101

    Article  CAS  Google Scholar 

  75. Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sust Energ Rev 24:159–171

    Article  CAS  Google Scholar 

  76. Price MS, Classen JJ, Payne GA (2001) Aspergillus Niger absorbs copper and zinc from swine wastewater. Bioresour Technol 77:41–49

    Article  CAS  Google Scholar 

  77. Purton S, Szaub JB, Wannathong T, Young R, Economou CK (2013) Genetic engineering of algal chloroplasts: progress and prospects. Russian J Plant Physiol 60:491–499

    Article  CAS  Google Scholar 

  78. Ramos-Martinez EM, Fimognari L, Sakuragi Y (2017) High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. Plant Biotechnol J 15:1214–1224

    Article  CAS  Google Scholar 

  79. Rasala BA, Mayfield SP (2011) The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs 2:50–54

    Article  Google Scholar 

  80. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional,and medical uses. Photosynth Res 123:227–239

    Article  CAS  Google Scholar 

  81. Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7(8):e43349

    Article  CAS  Google Scholar 

  82. Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20(3):227–235

    Article  CAS  Google Scholar 

  83. Salim S, Bosma R, Vermue MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23(5):849–855 15

    Article  Google Scholar 

  84. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  85. Shahila M, Jacob J, May M, Kotula L, Thiyagarajan P, Johnson ME, Fung LW-M (2003) Structural analysis of the αN-terminal region of erythroid and nonerythroid spectrins by small-angle X-ray scattering. Biochemistry 42(49):14702–14710

    Article  CAS  Google Scholar 

  86. Shamriz S, Ofoghi H (2016) Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng Rev 32(1–2):92–106

    Article  CAS  Google Scholar 

  87. Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4:397–407

    Article  CAS  Google Scholar 

  88. Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266

    Article  CAS  Google Scholar 

  89. Soares EV, Duarte AA (2002) Addition of nutrients induce a fast loss of flocculation in starved cells of Saccharomyces cerevisiae. Biotechnol Lett 24:1957–1960

    Article  CAS  Google Scholar 

  90. Stratford M (1989) Yeast flocculation: calcium specificity. Yeast 5:487–496

    Article  CAS  Google Scholar 

  91. Sun M, Qian KX, Su N, Chang HY, Liu JX et al (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092

    Article  CAS  Google Scholar 

  92. Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614

    Article  CAS  Google Scholar 

  93. Stephanie R, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  Google Scholar 

  94. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  CAS  Google Scholar 

  95. Tan KWM, Lee YK (2017) Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. J Biotechnol 247:60–67

    Article  CAS  Google Scholar 

  96. Teixeira JA, Mota M, Goma G (1990) Continuous ethanol production by a flocculating strain of Kluyveromyces marxianus: bioreactor performance. Bioprocess Eng 5:123–127

    Article  CAS  Google Scholar 

  97. Tofalo R, Perpetuini G, Di Gianvito P, Schirone M, Corsetti A, Suzzi G (2014) Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains. Int J Food Microbiol 191:45–52

    Article  CAS  Google Scholar 

  98. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31(4):233–239

    Article  CAS  Google Scholar 

  99. Verstrepen KJ, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM, Bauer FF, Pretorius IS (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76

    CAS  Google Scholar 

  100. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60(1):5–15

    Article  CAS  Google Scholar 

  101. Wan C, Asraful Alam M, Zhao X-Q, Zhang X-Y, Guo S-L, Ho S-H, Chang J-S, Bai F-W (2015) Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour Technol 184:251–257

    Article  CAS  Google Scholar 

  102. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  103. Wang PI, Marcotte EM (2010) It’s the machine that matters: predicting gene function and phenotype from protein networks. J Proteome 73:2277–2289

    Article  CAS  Google Scholar 

  104. Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T, Ball AS, Mouradov A (2014) Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS One 9(11):e113497

    Article  CAS  Google Scholar 

  105. Wu YH, Hu HY, Yu Y, Zhang TY, Zhu SF et al (2014) Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renew Sust Energ Rev 33:675–688

    Article  CAS  Google Scholar 

  106. Yang ZQ, Li YN, Chen F, Li D, Zhang ZF et al (2006) Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast. Chin Sci Bull 51:1703–1709

    Article  CAS  Google Scholar 

  107. Yusuke Y, Takashi S (2014) Recent advances in the study of chloroplast gene expression and its evolution., front. Plant Sci 5:61

    Google Scholar 

  108. Zhang GM, Wang B, Zhang PY, Wang L, Wang H (2006) Removal of algae by sonication–coagulation. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:1379–1390

    Article  CAS  Google Scholar 

  109. Zhou WG, Cheng YL, Li Y, Wan YQ, Liu YH et al (2012) Novel fungal Pelletization-assisted technology for Algae Harvesting and Wastewater Treatment. Appl Biochem Biotechnol 167:214–228

    Article  CAS  Google Scholar 

  110. Zhou WG, Min M, Hu B, Ma XC, Liu YH et al (2013) Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Sep Purif Technol 107:158–165

    Article  CAS  Google Scholar 

  111. Zhao XQ, Li Q, He L, Li F, Que W, Bai FW (2012) Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains. Process Biochem 47:1612–1619

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author acknowledges Women’s Polytechnic, Hapania, Government of Tripura for providing basic infrastructure for conducting the study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Debnath, S. (2019). Characterization of Extracellular Proteins to Explore Their Role in Bio-Flocculation for Harvesting Algal Biomass for Wastewater Treatment. In: Sukla, L., Subudhi, E., Pradhan, D. (eds) The Role of Microalgae in Wastewater Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_18

Download citation

Publish with us

Policies and ethics