Skip to main content

Epigenetics and Infectious Pathogens: Interactions, Ploy and Perspectives

  • Chapter
  • First Online:
Infectious Diseases and Your Health

Abstract

Since the inception of life, organisms have enormously diversified, from simple unicellular to complex multicellular. As many life forms coexist in an environment, they constantly interact with each other via beneficial or harmful interactions. Humans, being part of the same environment, have confronted many hostile organisms partly comprising of disease-causing pathogens. Pathogens use humans as host for completion of their life cycle or nutrition. Regardless of their purpose, pathogens inflict profound harm to health and well-being of humankind. To name a few, millions of people have died due to the havoc caused by diseases such as plague, tuberculosis, cholera, Spanish flu, Ebola, etc. Revolution in the field of medicine has offered multiple drugs/medications and vaccinations against these pathogens, but owing to their misusage and the increasing anthropogenic rooted climate change, multidrug-resistant species have evolved, capable of attacking more smartly on the host. It has now been established that many such harmful organisms induce epigenetic modifications in the host to suppress host immunity, maintain their own latency, etc. in the course of establishing themselves. To curb this problem, epigenetic modifiers have now been formulated into drugs. These drugs have demonstrated promising results, paving way towards novel cure. This chapter is an attempt to introduce epigenetics and its modifications in host, mediated by pathogens, with an emphasis on bacteria and viruses. Finally, it gives an overview of different novel epigenetic approaches to combat these pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams-Cioaba MA, Krupa JC, Xu C, Mort JS, Min J (2011) Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nat Commun 2:197

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M et al (2013) Essential cell biology. Garland Science, New York

    Google Scholar 

  • Andino A, Hanning I (2015) Salmonella enterica: survival, colonization, and virulence differences among serovars. Sci World J 2015:520179

    Article  CAS  Google Scholar 

  • Anwar MA, Choi S (2014) Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar Drugs 12:2485–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbibe L, Kim DW, Batsche E, Pedron T, Mateescu B, Muchardt C et al (2007) An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 8:47–56

    Article  CAS  PubMed  Google Scholar 

  • Ariffin JK, Das Gupta K, Kapetanovic R, Iyer A, Reid RC, Fairlie DP et al (2015) Histone deacetylase inhibitors promote mitochondrial reactive oxygen species production and bacterial clearance by human macrophages. Antimicrob Agents Chemother 60:1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Badeaux AI, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV, Bradner J et al (2012) BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol 92:1147–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreto-Vieira DF, Barth OM (2015) In: Shah MM (ed) Negative and positive staining in transmission electron microscopy for virus diagnosis. InTech, Rijeka

    Chapter  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS et al (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 99:8695–8700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierne H, Tham TN, Batsche E, Dumay A, Leguillou M, Kerneis-Golsteyn S et al (2009) Human BAHD1 promotes heterochromatic gene silencing. Proc Natl Acad Sci U S A 106:13826–13831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2:a010272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bloom DE (2011) 7 billion and counting. Science 333:562–569

    Article  CAS  PubMed  Google Scholar 

  • Borun TW, Pearson D, Paik WK (1972) Studies of histone methylation during the HeLa S-3 cell cycle. J Biol Chem 247:4288–4298

    CAS  PubMed  Google Scholar 

  • Bouchat S, Gatot JS, Kabeya K, Cardona C, Colin L, Herbein G et al (2012) Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4(+) T cells from HIV-1-infected HAART-treated patients. AIDS 26:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Braaten KP, Laufer MR (2008) Human papillomavirus (HPV), HPV-related disease, and the HPV vaccine. Rev Obstet Gynecol 1:2–10

    PubMed  PubMed Central  Google Scholar 

  • Brazel AJ, Vernimmen D (2016) The complexity of epigenetic diseases. J Pathol 238:333–344

    Article  PubMed  Google Scholar 

  • Buschbeck M, Hake SB (2017) Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 18:299–314

    Article  CAS  PubMed  Google Scholar 

  • Byvoet P, Shepherd GR, Hardin JM, Noland BJ (1972) The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys 148:558–567

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Yan Q (2012) Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20:845–854

    Article  CAS  PubMed  Google Scholar 

  • Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A et al (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5:675–679

    Article  CAS  PubMed  Google Scholar 

  • Celic I, Masumoto H, Griffith WP, Meluh P, Cotter RJ, Boeke JD et al (2006) The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol CB 16:1280–1289

    Article  CAS  PubMed  Google Scholar 

  • Chen ZX, Riggs AD (2011) DNA methylation and demethylation in mammals. J Biol Chem 286:18347–18353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Kang R, Fan XG, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis 5:e1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung V, Chua G, Batada NN, Landry CR, Michnick SW, Hughes TR et al (2008) Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol 6:e277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chi P, Allis CD, Wang GG (2010) Covalent histone modifications – miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T et al (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442:307–311

    Article  CAS  PubMed  Google Scholar 

  • Cohen JI (2009) Optimal treatment for chronic active Epstein-Barr virus disease. Pediatr Transplant 13:393–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole J, Morris P, Dickman MJ, Dockrell DH (2016) The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacol Ther 167:85–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costanzi C, Stein P, Worrad DM, Schultz RM, Pehrson JR (2000) Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos. Development 127:2283–2289

    CAS  PubMed  Google Scholar 

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25:315–319

    Article  CAS  PubMed  Google Scholar 

  • Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Bartolo DL, Cannon M, Liu YF, Renne R, Chadburn A, Boshoff C et al (2008) KSHV LANA inhibits TGF-beta signaling through epigenetic silencing of the TGF-beta type II receptor. Blood 111:4731–4740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004

    Article  CAS  PubMed  Google Scholar 

  • Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW et al (2005) Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 11:1828–1834

    Article  PubMed  PubMed Central  Google Scholar 

  • Falk MM, Grigera PR, Bergmann IE, Zibert A, Multhaup G, Beck E (1990) Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol 64:748–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JY, Gordon F, Luger K, Hansen JC, Tremethick DJ (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9:172–176

    Article  CAS  PubMed  Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K et al (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol CB 12:1052–1058

    Article  CAS  PubMed  Google Scholar 

  • Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev 15:506–526

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueroa J, Saffrich R, Ansorge W, Valdivia MM (1998) Microinjection of antibodies to centromere protein CENP-A arrests cells in interphase but does not prevent mitosis. Chromosoma 107:397–405

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Franz H, Jacobs SA, Allis CD, Khorasanizadeh S (2008) Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs. J Biol Chem 283:19626–19635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint SJ, Racaniello VR, Enquist LW, Skalka AM (2009) Principles of virology, volume 2: pathogenesis and control. ASM press, Washington, DC

    Google Scholar 

  • Fonseca GJ, Cohen MJ, Mymryk JS (2014) Adenovirus E1A recruits the human Paf1 complex to enhance transcriptional elongation. J Virol 88:5630–5637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcea RL, Imperiale MJ (2003) Simian virus 40 infection of humans. J Virol 77:5039–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Garcia JC, Rennoll-Bankert KE, Pelly S, Milstone AM, Dumler JS (2009) Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect Immun 77:2385–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garza-Gonzalez E, Perez-Perez GI, Maldonado-Garza HJ, Bosques-Padilla FJ (2014) A review of Helicobacter pylori diagnosis, treatment, and methods to detect eradication. World J Gastroenterol 20:1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershey EL, Haslett GW, Vidali G, Allfrey VG (1969) Chemical studies of histone methylation. Evidence for the occurrence of 3-methylhistidine in avian erythrocyte histone fractions. J Biol Chem 244:4871–4877

    CAS  PubMed  Google Scholar 

  • Goldknopf IL, Taylor CW, Baum RM, Yeoman LC, Olson MO, Prestayko AW et al (1975) Isolation and characterization of protein A24, a “histone-like” non-histone chromosomal protein. J Biol Chem 250:7182–7187

    CAS  PubMed  Google Scholar 

  • Gramolelli S, Schulz TF (2015) The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol 235:368–380

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon MA, Batsche E, Regnault B, Tham TN, Seveau S, Muchardt C et al (2007) Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci U S A 104:13467–13472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70:789–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S (2014) Use of epigenetic drugs in disease: an overview. Genet Epigenet 6:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  CAS  PubMed  Google Scholar 

  • Hempel K, Lange HW, Birkofer L (1968) Epsilon-N-trimethyllysine, a new amino acid in histones. Naturwissenschaften 55:37

    Article  CAS  PubMed  Google Scholar 

  • Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  PubMed  Google Scholar 

  • Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35:208–219

    Article  CAS  PubMed  Google Scholar 

  • Jennison AV, Verma NK (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28:43–58

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Johnson NP, Mueller J (2002) Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull Hist Med 76:105–115

    Article  PubMed  Google Scholar 

  • Joo HY, Zhai L, Yang C, Nie S, Erdjument-Bromage H, Tempst P et al (2007) Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Jungmichel S, Stucki M (2010) MDC1: the art of keeping things in focus. Chromosoma 119:337–349

    Article  CAS  PubMed  Google Scholar 

  • Kang B, Pu M, Hu G, Wen W, Dong Z, Zhao K et al (2011) Phosphorylation of H4 Ser 47 promotes HIRA-mediated nucleosome assembly. Genes Dev 25:1359–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul R, Hoang A, Yau P, Bradbury EM, Wenman WM (1997) The chlamydial EUO gene encodes a histone H1-specific protease. J Bacteriol 179:5928–5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawase M (2013) Genetics of epidermodysplasia verruciformis. InTech, Rijeka

    Book  Google Scholar 

  • Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M et al (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12:401–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khairalla AS, Omer SA, Mahdavi J, Aslam A, Dufailu OA, Self T et al (2015) Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cell Microbiol 17:1008–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K-H, Yi J, Won Sup O, Kim N-H, Choi SJ, Choe PG, Kim N-J, Lee J-K, Myoung-don O (2014) Human granulocytic Anaplasmosis, South Korea, 2013. Emerg Infect Dis 20(10):1708–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006a) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P et al (2006b) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442:312–316

    Article  CAS  PubMed  Google Scholar 

  • Koch-Nolte F, Kernstock S, Mueller-Dieckmann C, Weiss MS, Haag F (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci 13:6716–6729

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kusters JG, Van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai HC, Lin YW, Chang CC, Wang HC, Chu TW, Yu MH et al (2007) Hypermethylation of two consecutive tumor suppressor genes, BLU and RASSF1A, located at 3p21.3 in cervical neoplasias. Gynecol Oncol 104:629–635

    Article  CAS  PubMed  Google Scholar 

  • Lan R, Reeves PR (1996) Gene transfer is a major factor in bacterial evolution. Mol Biol Evol 13:47–55

    Article  CAS  PubMed  Google Scholar 

  • Ledford H (2015) Epigenetics: the genome unwrapped. Nature 528:S12–S13

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  • Liang TJ (2009) Hepatitis B: the virus and disease. Hepatology 49:S13–S21

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Maas NL, Miller KM, Defazio LG, Toczyski DP (2006) Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell 23:109–119

    Article  CAS  PubMed  Google Scholar 

  • Maejima Y, Sadoshima J (2014) SUMOylation: a novel protein quality control modifier in the heart. Circ Res 115:686–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra M, Sood S, Mukherjee A, Muralidhar S, Bala M (2013) Genital Chlamydia trachomatis: an update. Indian J Med Res 138:303–316

    PubMed  PubMed Central  Google Scholar 

  • Mandal P, Azad GK, Tomar RS (2012) Identification of a novel histone H3 specific protease activity in nuclei of chicken liver. Biochem Biophys Res Commun 421:261–267

    Article  CAS  PubMed  Google Scholar 

  • Mandal P, Verma N, Chauhan S, Tomar RS (2013) Unexpected histone H3 tail-clipping activity of glutamate dehydrogenase. J Biol Chem 288:18743–18757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal P, Verma N, Azad GK, Singh V, Golla U, Tomar RS (2014) Epigenetics: role of histone proteases in cellular functions and diseases. Springer, New York

    Google Scholar 

  • Medicine IO (2015) Emerging viral diseases: the one health connection: workshop summary. The National Academies Press, Washington, DC

    Google Scholar 

  • Mesri EA, Cesarman E, Boshoff C (2010) Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer 10:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21:534–542

    Article  CAS  PubMed  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    Article  CAS  PubMed  Google Scholar 

  • Milne JC, Denu JM (2008) The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 12:11–17

    Article  CAS  PubMed  Google Scholar 

  • Moosavi A, Motevalizadeh Ardekani A (2016) Role of epigenetics in biology and human diseases. Iran Biomed J 20:246–258

    PubMed  PubMed Central  Google Scholar 

  • Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    Article  CAS  PubMed  Google Scholar 

  • Nelson CJ, Santos-Rosa H, Kouzarides T (2006) Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126:905–916

    Article  CAS  PubMed  Google Scholar 

  • Niwa T, Toyoda T, Tsukamoto T, Mori A, Tatematsu M, Ushijima T (2013) Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent. Cancer Prev Res (Philadelphia, Pa.) 6:263–270

    Article  CAS  Google Scholar 

  • Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  PubMed  Google Scholar 

  • Paddock CD, Childs JE (2003) Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev 16:37–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Paschos K, Allday MJ (2010) Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 18:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennini ME, Perrinet S, Dautry-Varsat A, Subtil A (2010) Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog 6:e1000995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A, Drescher K et al (2015) The mechanical world of bacteria. Cell 161:988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollina EA, Brunet A (2011) Epigenetic regulation of aging stem cells. Oncogene 30:3105–3126

    Article  CAS  PubMed  Google Scholar 

  • Porwollik S, Boyd EF, Choy C, Cheng P, Florea L, Proctor E et al (2004) Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 186:5883–5898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin S, Parthun MR (2006) Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol Cell Biol 26:3649–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    Article  CAS  PubMed  Google Scholar 

  • Redon C, Pilch DR, Rogakou EP, Orr AH, Lowndes NF, Bonner WM (2003) Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep 4:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268:462–464

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  • Rossetto D, Avvakumov N, Cote J (2012) Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7:1098–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouphael NG, Stephens DS (2012) Neisseria meningitidis: biology, microbiology, and epidemiology. Methods Mol Biol (Clifton N.J.) 799:1–20

    Article  CAS  Google Scholar 

  • Salguero FJ, Sanchez-Martin MA, Diaz-San Segundo F, De Avila A, Sevilla N (2005) Foot-and-mouth disease virus (FMDV) causes an acute disease that can be lethal for adult laboratory mice. Virology 332:384–396

    Article  CAS  PubMed  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411

    Article  CAS  PubMed  Google Scholar 

  • Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, Haug J et al (2009) Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell 35:626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA (2010) ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141:970–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T et al (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442:96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smale ST, Tarakhovsky A, Natoli G (2014) Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol 32:489–511

    Article  CAS  PubMed  Google Scholar 

  • Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward MM, Lee JS, O’Donovan A, Wyatt M, Bernstein BE, Shilatifard A (2006) Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 13:852–854

    Article  CAS  PubMed  Google Scholar 

  • Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES et al (2009) The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136:420–434

    Article  CAS  PubMed  Google Scholar 

  • Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226

    Article  CAS  PubMed  Google Scholar 

  • Swanson EC, Schleiss MR (2013) Congenital cytomegalovirus infection: new prospects for prevention and therapy. Pediatr Clin N Am 60:335–349

    Article  Google Scholar 

  • Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond Ser B Biol Sci 356:983–989

    Article  CAS  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  CAS  PubMed  Google Scholar 

  • Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Cote J (2005) Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25:8179–8190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW et al (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilchez RA, Butel JS (2004) Emergent human pathogen simian virus 40 and its role in cancer. Clin Microbiol Rev 17:495–508, table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma S, Iyer LR, Muley M, Singh PK, Shastry A, Saxena A et al (2013) Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects. Int Immunopharmacol 16:72–78

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS et al (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878

    Article  CAS  PubMed  Google Scholar 

  • West MH, Bonner WM (1980) Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res 8:4671–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:467–481

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Qi J, Bradner JE, Xiao G, Chen LF (2013) Bromodomain and extraterminal (BET) protein inhibition suppresses human T cell leukemia virus 1 (HTLV-1) tax protein-mediated tumorigenesis by inhibiting nuclear factor kappaB (NF-kappaB) signaling. J Biol Chem 288:36094–36105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaseen I, Kaur P, Nandicoori VK, Khosla S (2015) Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 6:8922

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Fukuyama S, Sakai-Tagawa Y, Takashita E, Shoemaker JE, Kawaoka Y (2015) C646, a novel p300/CREB-binding protein-specific inhibitor of histone acetyltransferase, attenuates influenza A virus infection. Antimicrob Agents Chemother 60:1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Zhou P, Wu E, Alam HB, Li Y (2014) Histone cleavage as a mechanism for epigenetic regulation: current insights and perspectives. Curr Mol Med 14:1164–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Nethery KA, Kuriakose JA, Wakeel A, Zhang X, Mcbride JW (2009) Nuclear translocated Ehrlichia chaffeensis ankyrin protein interacts with a specific adenine-rich motif of host promoter and intronic Alu elements. Infect Immun 77:4243–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the members of our lab for their immense patience, discussions, and repeated corrections which helped us in writing the chapter. NS acknowledges IISER Bhopal for her fellowship support. SERB and DBT are acknowledged for the funding support to RST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuvir Singh Tomar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, N., Tomar, R.S. (2018). Epigenetics and Infectious Pathogens: Interactions, Ploy and Perspectives. In: Singh, P. (eds) Infectious Diseases and Your Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-1577-0_20

Download citation

Publish with us

Policies and ethics