Skip to main content

In Situ Single Molecule Detection on Cell Membrane and Label Molecule Distributions Using AFM/NSOM

  • Chapter
  • First Online:
Book cover Atomic Force Microscopy in Molecular and Cell Biology
  • 1215 Accesses

Abstract

Consisting of viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, cell membranes have proven to play very important roles in ensuring the stability of the intracellular environment and order of cellular signal transductions. The developments of modern cell biology, immunology, and medicine urge us to explore more precise cell membrane structures and detailed functions of biomolecules on cell membranes. Due to the minuscule size of biomolecules and their clusters on cell membranes (varying from several nanometers to hundreds of nanometers), a high resolution microscopy is needed to explore the cell membrane biomolecule distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santini S, Di Agostino S, Coppari E, Bizzarri AR, Blandino G, Cannistraro S. Biochim Biophys Acta. 2014;1840:1958–64.

    Article  CAS  Google Scholar 

  2. Carvalho FA, Connell S, Miltenberger-Miltenyi G, Pereira SV, Tavares A, Ariens RAS, Santos NC. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano. 2010;4:4609–20.

    Article  CAS  Google Scholar 

  3. Zhang J, Liu H, Zhu R, Hinterdorfer P, Zhang B, Tang J. Single molecular dissection of the ligand binding property of epidermal growth factor receptor. Analyst. 2013;138:5325–31.

    Article  CAS  Google Scholar 

  4. Zhang X, Shi X, Xu L, Yuan J, Fang X. Atomic force microscopy study of the effect of HER 2 antibody on EGF mediated ErbB ligand–receptor interaction. Nanomedicine. 2013;9:627–35.

    Article  CAS  Google Scholar 

  5. Lama G, Papi M, Angelucci C, Maulucci G, Sica G, De Spirito M. Leuprorelin acetate long-lasting effects on GnRH receptors of prostate cancer cells: an atomic force microscopy study of agonist/receptor interaction. PLoS One. 2013;8:e52530.

    Article  CAS  Google Scholar 

  6. Puntheeranurak T, Neundlinger I, Kinne RK, Hinterdorfer P. Single-molecule recognition force spectroscopy of transmembrane transporters on living cells. Nat Protoc. 2011;6:1443–52.

    Article  CAS  Google Scholar 

  7. Dupres V, Menozzi FD, Locht C, Clare BH, Abbott NL, Cuenot S, Bompard C, Raze D, Dufrene YF. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods. 2005;2:515–20.

    Article  CAS  Google Scholar 

  8. Pi J, Jin H, Yang F, Chen ZW, Cai J. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. Nanoscale. 2014;6:12229–49.

    Article  CAS  Google Scholar 

  9. Chtcheglova LA, Hinterdorfer P. Simultaneous topography and recognition imaging on endothelial cells. J Mol Recognit. 2011;24:788–94.

    Article  CAS  Google Scholar 

  10. Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science. 1992;257:189–95.

    Article  CAS  Google Scholar 

  11. Garcia-Parajo MF, Veerman JA, van Noort SJT, de Grooth BG, Greve J, van Hulst NF. Near-field optical microscopy for DNA studies at the single molecular level. Bioimaging. 1998;6:43–53.

    Article  CAS  Google Scholar 

  12. de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figdor CG. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci. 2001;114:4153–60.

    PubMed  Google Scholar 

  13. Chen Y, Shao L, Ali Z, Cai J, Chen ZW. NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal V 2V 2 T-cell expansion. Blood. 2008;111:4220–32.

    Article  CAS  Google Scholar 

  14. Dufrene YF. Using nanotechniques to explore microbial surfaces. Nat Rev Microbiol. 2004;2:451–60.

    Article  CAS  Google Scholar 

  15. Dufrene YF. Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol. 2008;6:674–80.

    Article  CAS  Google Scholar 

  16. Francius G, Lebeer S, Alsteens D, Wildling L, Gruber HJ, Hols P, De Keersmaecker S, Vanderleyden J, Dufrene YF. Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano. 2008;2:1921–9.

    Article  CAS  Google Scholar 

  17. Heinisch JJ, Dupres V, Wilk S, Jendretzki A, Dufrene YF. Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor wsc1. PLoS One. 2010;5:e11104.

    Article  Google Scholar 

  18. Francius G, Alsteens D, Dupres V, Lebeer S, De Keersmaecker S, Vanderleyden J, Gruber HJ, Dufrene YF. Stretching polysaccharides on live cells using single molecule force spectroscopy. Nat Protoc. 2009;4:939–46.

    Article  CAS  Google Scholar 

  19. Verbelen C, Dufrene YF. Direct measurement of Mycobacterium–fibronectin interactions. Integr Biol (Camb). 2009;1:296–300.

    Article  CAS  Google Scholar 

  20. Alsteens D, Dupres V, Klotz SA, Gaur NK, Lipke PN, Dufrene YF. Unfolding individual Als5p adhesion proteins on live cells. ACS Nano. 2009;3:1677–82.

    Article  CAS  Google Scholar 

  21. Beaussart A, Alsteens D, El-Kirat-Chatel S, Lipke PN, Kucharikova S, Van Dijck P, Dufrene YF. Single-Molecule Imaging and Functional Analysis of Als Adhesins and Mannans during Candida albicans Morphogenesis. ACS Nano. 2012;6:10950–64.

    Article  CAS  Google Scholar 

  22. Andre G, Deghorain M, Bron PA, van Swam II, Kleerebezem M, Hols P, Dufrene YF. ACS Chem Biol. 2011;6:366–76.

    Article  CAS  Google Scholar 

  23. Herman-Bausier P, Dufrene YF. Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF. Mol Microbiol. 2016;99:611–21.

    Article  CAS  Google Scholar 

  24. Arnal L, Longo G, Stupar P, Castez MF, Cattelan N, Salvarezza RC, Yantorno OM, Kasas S, Vela ME. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy. Nanoscale. 2015;7:17563–72.

    Article  CAS  Google Scholar 

  25. Dupres V, Verbelen C, Raze D, Lafont F, Dufrene YF. Force spectroscopy of the interaction between mycobacterial adhesins and heparan sulphate proteoglycan receptors. ChemPhysChem. 2009;10:1672–5.

    Article  CAS  Google Scholar 

  26. Maciaszek JL, Soh H, Walikonis RS, Tzingounis AV, Lykotrafitis G. Topography of native SK channels revealed by force nanoscopy in living neurons. J Neurosci. 2012;32:11435–40.

    Article  CAS  Google Scholar 

  27. Li M, Xiao X, Zhang W, Liu L, Xi N, Wang Y. Nanoscale distribution of CD20 on B-cell lymphoma tumour cells and its potential role in the clinical efficacy of rituximab. J Microsc. 2014;254:19–30.

    Article  CAS  Google Scholar 

  28. Li M, Liu L, Xi N, Wang Y, Xiao X, Zhang W. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy. Biochem Biophys Res Commun. 2013;438:709–14.

    Article  CAS  Google Scholar 

  29. Chtcheglova LA, Waschke J, Wildling L, Drenckhahn D, Hinterdorfer P. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys J. 2007;93:L11–3.

    Article  CAS  Google Scholar 

  30. Duman M, Pfleger M, Zhu R, Rankl C, Chtcheglova LA, Neundlinger I, Bozna BL, Mayer B, Salio M, Shepherd D, Polzella P, Moertelmaier M, Kada G, Ebner A, Dieudonne M, Schutz GJ, Cerundolo V, Kienberger F, Hinterdorfer P. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging. Nanotechnology. 2010;21:115504.

    Article  CAS  Google Scholar 

  31. Ron A, Singh RR, Fishelson N, Socher R, Benayahu D, Shacharn-Diamand Y. Site localization of membrane-bound proteins on whole cell level using atomic force microscopy. Biophys Chem. 2008;132:127–38.

    Article  CAS  Google Scholar 

  32. Li ZX, Qiu DL, Xu KM, Sridharan I, Qian XP, Wang R. Analysis of affinity maps of membrane proteins on individual human embryonic stem cells. Langmuir. 2011;27:8294–301.

    Article  CAS  Google Scholar 

  33. Ahmad SF, Chtcheglova LA, Mayer B, Kuznetsov SA, Hinterdorfer P. Nanosensing of Fcγ receptors on macrophages. Anal Bioanal Chem. 2011;399:2359–67.

    Article  CAS  Google Scholar 

  34. Chtcheglova LA, Atalar F, Ozbek U, Wildling L, Ebner A, Hinterdorfer P. Localization of the ergtoxin-1 receptors on the voltage sensing domain of hERG K+ channel by AFM recognition imaging. Pflugers Arch. 2008;456:247–54.

    Article  CAS  Google Scholar 

  35. Li G, Xi N, Wang DH. In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine. 2005;1:31–40.

    Article  Google Scholar 

  36. Lee S, Mandic J, Van Vliet KJ. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci USA. 2007;104:9609–14.

    Article  CAS  Google Scholar 

  37. Xiao L, Chen Q, Wu Y, Qi X, Zhou A. Biochim Biophys Acta. 1848;2015:1988–95.

    Google Scholar 

  38. Enderle T, Ha T, Ogletree DF, Chemla DS, Magowan C, Weiss S. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc Natl Acad Sci U S A. 1997;94:520–5.

    Article  CAS  Google Scholar 

  39. Zhong LY, Liao WT, Wang XP, Cai JY. Colloids Surf A. 2008;313:642–6.

    Article  Google Scholar 

  40. Chen J, Pei Y, Chen Z, Cai J. Quantum dot labeling based on near-field optical imaging of CD44 molecules. Micron. 2010;41:198–202.

    Article  CAS  Google Scholar 

  41. Zeng G, Chen CY, Huang D, Yao S, Wang RC, Chen ZW. Membrane-bound IL-22 after de novo production in tuberculosis and anti-mycobacterium tuberculosis effector function of IL-22+ CD4+ T cells. J Immunol. 2011;187:190–9.

    Article  CAS  Google Scholar 

  42. Zhong L, Zeng G, Lu X, Wang RC, Gong G, Yan L, Huang D, Chen ZW. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation. PLoS One. 2009;4:e5945.

    Article  Google Scholar 

  43. Chen Y, Qin J, Cai J, Chen ZW. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations. PLoS One. 2009;4:e5386.

    Article  Google Scholar 

  44. Zhong L, Zhang Z, Lu X, Huang D, Chen CY, Wang R, Chen ZW. NSOM/QD-based fluorescence–topographic image fusion directly reveals nano-spatial peak–valley polarities of CD69 and CD71 activation molecules on cell-membrane fluctuations during T-cell activation. Immunol Lett. 2011;140:44–51.

    Article  CAS  Google Scholar 

  45. Zeng G, Chen J, Zhong L, Wang R, Jiang L, Cai J, Yan L, Huang D, Chen CY, Chen ZW. NSOM- and AFM-based nanotechnology elucidates nano-structural and atomic-force features of a Y. pestis V immunogen-containing particle vaccine capable of eliciting robust response. Proteomics. 2009;9:1538–47.

    Article  CAS  Google Scholar 

  46. Hu M, Chen J, Wang J, Wang X, Ma S, Cai J, Chen CY, Chen ZW. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+T cell membrane. J Mol Recognit. 2009;22:516–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by China Postdoctoral Science Foundation (2018M631026) and Macau Science and Technology Development Fund (Grant No. 028/2014/A1). This chapter was adapted from the paper published by our group in Nanoscale (Pi Jiang, Jin Hua, Yang Fen, Chen ZhengW., Cai Jiye, 2014 Nov 7; 6; 21; 12229-12249). The related contents are reproduced with permission from The Royal Society of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pi, J., Jin, H., Cai, J. (2018). In Situ Single Molecule Detection on Cell Membrane and Label Molecule Distributions Using AFM/NSOM. In: Cai, J. (eds) Atomic Force Microscopy in Molecular and Cell Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1510-7_3

Download citation

Publish with us

Policies and ethics