Abstract
With the explosive growth in the demand for higher bandwidth, more new technologies are emerging. Frequencies 10 GHz will be fully occupied within few years by communication channel. The millimeter-wave (mm-wave) frequency band that ranges from 30 to 300 GHz is a new frontier for fifth generation (5G) mobile communication. The mm-wave frequencies suffer from very high attenuation in free space and through objects that limit the signal propagation range. In this paper, the downlink of 5G network architecture has been proposed in order to increase the data throughputs and coverage. The free space channel has been characterized by the Rayleigh fading channel. Orthogonal frequency-division multiple access (OFDMA) have been utilized in the downlink. The proposed network uses 16-quadrature amplitude modulation (QAM) which will ensure greater data throughputs above 5 Gbps. Also, using adaptive beam-forming antennas, the network is expected to provide increased coverage of about 2 km.
Keywords
- Downlink
- Orthogonal Frequency Division Multiple Access (OFDMA)
- Free Space Channel
- Quadrature Phase Shift Keying (QPSK)
- Massive MIMO
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options





References
Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work!. IEEE Access 1, 335–349 (2013). https://doi.org/10.1109/ACCESS.2013.2260813
Lockie, D., Peck, D.: High-data-rate millimeter-wave radios. IEEE Microw. Mag. 10(5), 75–83 (2009). https://doi.org/10.1109/MMM.2009.932834
Rappaport, T.S., Murdock, J.N., Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011). https://doi.org/10.1109/JPROC.2011.2143650
Khan, F., Pi, Z.: mmWave mobile broadband (MMB): unleashing the 3–300 GHz spectrum. In: Proceeding of 34th IEEE Sarnoff Symposium, pp. 1–6 (2011) https://doi.org/10.1109/SARNOF.2011.5876482
Pi, Z., Khan, F.: An introduction to millimeter wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011). https://doi.org/10.1109/MCOM.2011.5783993
Pietraski, P., Britz, D., Roy, A., Pragada, R., Charlton, G.: Millimeter wave and terahertz communications: feasibility and challenges. ZTE Commun. 10(4), 3–12 (2012)
Huang, K.C., Wang, Z.: Millimeter Wave Communication Systems. Wiley 29 (Sections 1.1–1.2) (2011). ISBN 1-118-10275-4
Rappaport, T., Gutierrez, F., Ben-Dor, E., Murdock, J.N., Qiao, Y., Tamir, J.I.: Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 61(4), 1850–1859 (2013). https://doi.org/10.1109/TAP.2012.2235056
Myung, H.G.: Introduction to single carrier FDMA. In: 15th European Signal Proceeding Conference (EUSIPCO 2007), pp. 2144–2148. IEEE, New york (2007)
Wang, P., Li, Y., Yuan, X., Song, L., Vucetic, B.: Tens of gigabits wireless communications over E-Band LoS MIMO channels with uniform linear antenna arrays. IEEE Trans. Wirel. Commun. 13(7), 3791–3805 (2014). https://doi.org/10.1109/TWC.2014.2318053
Guo, Y.J., Liu, D., Bird, N.C.: Guest editorial for the special issue on antennas and propagation aspects of 60–90 GHz wireless communications. IEEE Trans. Antennas Propag. 57(10), 2817–2819 (2009). https://doi.org/10.1109/TAP.2009.2032587
Zhao, X., Kivinen, J., Vainikainen, P., Skog, K.: Propagation characteristics for wideband outdoor mobile communications at 5.3 GHz. IEEE J. Sel. Areas Commun. 20(3), 507–514 (2002). https://doi.org/10.1109/49.995509
Rajagopal, S., Abu-Surra, S., Malmirchegini, M.: Channel feasibility for outdoor non-line-of-sight mmwave mobile communication. In: Proceeding of IEEE Vehicle Technology Conference (VTC Fall), pp. 1–6 (2012) https://doi.org/10.1109/VTCFall.2012.6398884
Rappaport, T., Ben-Dor, E., Murdock, J.N., Qiao, Y.: 38 GHz and 60 GHz angle-dependent propagation for cellular and peer-to-peer wireless communications. In: Proceeding of IEEE International Conference on Communications (ICC), pp. 4568–4573 (2012) https://doi.org/10.1109/ICC.2012.6363891
Madhow, U.: Networking at 60 GHz: the emergence of multigigabit wireless. In: Proceeding 2nd International COMSNET, pp. 1–6 (2010) https://doi.org/10.1109/COMSNETS.2010.5431983
Yong, S.K., Chong, C.C.: An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges. EURASIP J. Wirel. Commun. Netw. 2007(1), 78907-1-78907-10 (2007) https://doi.org/10.1155/2007/78907
Federal Communication Commission: Allocation and service rules for the 71–76 GHz, 81–86 GHz and 92–95 GHz bands. FCC Memorandum Opinion and Order, FCC 03-248 (2003)
Chimeh, J.D.: 5G Mobile communications: a mandatory wireless infrastructure for Big data. In: Proceeding of International Conference on Advances in Computing, Electronics and Electrical Technology (CEET), vol. 2015 (2015) https://doi.org/10.15224/978-1-63248-056-9-29
Ancora, A., Bona, C., Slock, D.T.: Down-sampled impulse response least-squares channel estimation for LTE OFDMA. In: IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP, vol. 3, pp. 293–296 (2007) https://doi.org/10.1109/ICASSP.2007.366530
Roddy, D.: Satellite Communication. 4/e, McGraw-Hill, New York (2006). ISBN 0-07-146298-8
CCIR Doc. Rep. 719-3.: Attenuation by Atmospheric Gases. ITU (1990)
Flock, W.L.: Propagation Effects on Satellite Systems at Frequencies Below 10 GHz: A handbook for satellite systems design. NASA Doc.1108(02) (Chaps. 3, 4 and 9 passim) (1987)
Lovsz, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979). https://doi.org/10.1109/TIT.1979.1055985
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Bulbul, A.AM., Hasan, M.T., Kadir, M.I., Hossain, M.M., Nahid, A.A., Hasan, M.N. (2019). High-Capacity Downlink for Millimeter Wave Communication Network Architecture. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 814. Springer, Singapore. https://doi.org/10.1007/978-981-13-1501-5_58
Download citation
DOI: https://doi.org/10.1007/978-981-13-1501-5_58
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-1500-8
Online ISBN: 978-981-13-1501-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)