Advertisement

High-Capacity Downlink for Millimeter Wave Communication Network Architecture

  • Abdullah Al-Mamun BulbulEmail author
  • Md. Tariq Hasan
  • Mohammad Ismat Kadir
  • Md. Mahbub Hossain
  • Abdullah Al Nahid
  • Md. Nazmul Hasan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 814)

Abstract

With the explosive growth in the demand for higher bandwidth, more new technologies are emerging. Frequencies 10 GHz will be fully occupied within few years by communication channel. The millimeter-wave (mm-wave) frequency band that ranges from 30 to 300 GHz is a new frontier for fifth generation (5G) mobile communication. The mm-wave frequencies suffer from very high attenuation in free space and through objects that limit the signal propagation range. In this paper, the downlink of 5G network architecture has been proposed in order to increase the data throughputs and coverage. The free space channel has been characterized by the Rayleigh fading channel. Orthogonal frequency-division multiple access (OFDMA) have been utilized in the downlink. The proposed network uses 16-quadrature amplitude modulation (QAM) which will ensure greater data throughputs above 5 Gbps. Also, using adaptive beam-forming antennas, the network is expected to provide increased coverage of about 2 km.

Keywords

Downlink Orthogonal Frequency Division Multiple Access (OFDMA) Free Space Channel Quadrature Phase Shift Keying (QPSK) Massive MIMO 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work!. IEEE Access 1, 335–349 (2013).  https://doi.org/10.1109/ACCESS.2013.2260813CrossRefGoogle Scholar
  2. 2.
    Lockie, D., Peck, D.: High-data-rate millimeter-wave radios. IEEE Microw. Mag. 10(5), 75–83 (2009).  https://doi.org/10.1109/MMM.2009.932834CrossRefGoogle Scholar
  3. 3.
    Rappaport, T.S., Murdock, J.N., Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011).  https://doi.org/10.1109/JPROC.2011.2143650CrossRefGoogle Scholar
  4. 4.
    Khan, F., Pi, Z.: mmWave mobile broadband (MMB): unleashing the 3–300 GHz spectrum. In: Proceeding of 34th IEEE Sarnoff Symposium, pp. 1–6 (2011)  https://doi.org/10.1109/SARNOF.2011.5876482
  5. 5.
    Pi, Z., Khan, F.: An introduction to millimeter wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011).  https://doi.org/10.1109/MCOM.2011.5783993CrossRefGoogle Scholar
  6. 6.
    Pietraski, P., Britz, D., Roy, A., Pragada, R., Charlton, G.: Millimeter wave and terahertz communications: feasibility and challenges. ZTE Commun. 10(4), 3–12 (2012)Google Scholar
  7. 7.
    Huang, K.C., Wang, Z.: Millimeter Wave Communication Systems. Wiley 29 (Sections 1.1–1.2) (2011). ISBN 1-118-10275-4Google Scholar
  8. 8.
    Rappaport, T., Gutierrez, F., Ben-Dor, E., Murdock, J.N., Qiao, Y., Tamir, J.I.: Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 61(4), 1850–1859 (2013).  https://doi.org/10.1109/TAP.2012.2235056CrossRefGoogle Scholar
  9. 9.
    Myung, H.G.: Introduction to single carrier FDMA. In: 15th European Signal Proceeding Conference (EUSIPCO 2007), pp. 2144–2148. IEEE, New york (2007)Google Scholar
  10. 10.
    Wang, P., Li, Y., Yuan, X., Song, L., Vucetic, B.: Tens of gigabits wireless communications over E-Band LoS MIMO channels with uniform linear antenna arrays. IEEE Trans. Wirel. Commun. 13(7), 3791–3805 (2014).  https://doi.org/10.1109/TWC.2014.2318053CrossRefGoogle Scholar
  11. 11.
    Guo, Y.J., Liu, D., Bird, N.C.: Guest editorial for the special issue on antennas and propagation aspects of 60–90 GHz wireless communications. IEEE Trans. Antennas Propag. 57(10), 2817–2819 (2009).  https://doi.org/10.1109/TAP.2009.2032587CrossRefGoogle Scholar
  12. 12.
    Zhao, X., Kivinen, J., Vainikainen, P., Skog, K.: Propagation characteristics for wideband outdoor mobile communications at 5.3 GHz. IEEE J. Sel. Areas Commun. 20(3), 507–514 (2002).  https://doi.org/10.1109/49.995509CrossRefGoogle Scholar
  13. 13.
    Rajagopal, S., Abu-Surra, S., Malmirchegini, M.: Channel feasibility for outdoor non-line-of-sight mmwave mobile communication. In: Proceeding of IEEE Vehicle Technology Conference (VTC Fall), pp. 1–6 (2012)  https://doi.org/10.1109/VTCFall.2012.6398884
  14. 14.
    Rappaport, T., Ben-Dor, E., Murdock, J.N., Qiao, Y.: 38 GHz and 60 GHz angle-dependent propagation for cellular and peer-to-peer wireless communications. In: Proceeding of IEEE International Conference on Communications (ICC), pp. 4568–4573 (2012)  https://doi.org/10.1109/ICC.2012.6363891
  15. 15.
    Madhow, U.: Networking at 60 GHz: the emergence of multigigabit wireless. In: Proceeding 2nd International COMSNET, pp. 1–6 (2010)  https://doi.org/10.1109/COMSNETS.2010.5431983
  16. 16.
    Yong, S.K., Chong, C.C.: An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges. EURASIP J. Wirel. Commun. Netw. 2007(1), 78907-1-78907-10 (2007)  https://doi.org/10.1155/2007/78907
  17. 17.
    Federal Communication Commission: Allocation and service rules for the 71–76 GHz, 81–86 GHz and 92–95 GHz bands. FCC Memorandum Opinion and Order, FCC 03-248 (2003)Google Scholar
  18. 18.
    Chimeh, J.D.: 5G Mobile communications: a mandatory wireless infrastructure for Big data. In: Proceeding of International Conference on Advances in Computing, Electronics and Electrical Technology (CEET), vol. 2015 (2015)  https://doi.org/10.15224/978-1-63248-056-9-29
  19. 19.
    Ancora, A., Bona, C., Slock, D.T.: Down-sampled impulse response least-squares channel estimation for LTE OFDMA. In: IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP, vol. 3, pp. 293–296 (2007)  https://doi.org/10.1109/ICASSP.2007.366530
  20. 20.
    Roddy, D.: Satellite Communication. 4/e, McGraw-Hill, New York (2006). ISBN 0-07-146298-8Google Scholar
  21. 21.
    CCIR Doc. Rep. 719-3.: Attenuation by Atmospheric Gases. ITU (1990)Google Scholar
  22. 22.
    Flock, W.L.: Propagation Effects on Satellite Systems at Frequencies Below 10 GHz: A handbook for satellite systems design. NASA Doc.1108(02) (Chaps. 3, 4 and 9 passim) (1987)Google Scholar
  23. 23.
    Lovsz, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979).  https://doi.org/10.1109/TIT.1979.1055985

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Abdullah Al-Mamun Bulbul
    • 1
    Email author
  • Md. Tariq Hasan
    • 1
  • Mohammad Ismat Kadir
    • 1
  • Md. Mahbub Hossain
    • 1
  • Abdullah Al Nahid
    • 1
    • 2
  • Md. Nazmul Hasan
    • 1
  1. 1.Electronics and Communication Engineering DisciplineKhulna UniversityKhulnaBangladesh
  2. 2.School of EngineeringMacquarie UniversitySydneyAustralia

Personalised recommendations