Skip to main content

Abstract

Textile industries are one of the largest generator of wastewater as large amount of water is used in coloring and finishing processes. The effluents released from textile industries contain biodegradable and non-biodegradable chemicals such as dyes, dispersants, leveling agents etc. These effluents are released into water bodies which can modify the physical, chemical and biological nature of the receiving water bodies. Azo dyes are largely utilized in textile industry as coloring agent. During the processing of textile, a lot of dyestuff specifically lost to the wastewater due to inefficiency in dyeing processes which may causes serious health and environmental problems. Therefore, removal of dyes from textile wastewater is necessary prior to their disposal. Several physico-chemical techniques have been utilized for the treatment of wastewater containing dyes, but execution of these strategies have the distinctive limitations of being expensive, unable to the complete removal of dyes from wastewater, and producing noteworthy amounts of sludge that may cause auxiliary pollution issues. The application of microorganisms (bacteria, fungi and algae) and plants for the removal of azo dyes from textile wastewater is an attractive option over the physico-chemical methods. Biological methods are environment friendly, produce less sludge, and inexpensive. Water recycling is the reuse of treated wastewater for valuable purposes such as agricultural irrigation and industrial processes etc. Recycling of textile wastewater is important for restricting the amount of wastewater and expenses of production, and recommended for the protection of environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarry SE, Ayobami OA (2011) Evaluation of microbial systems for biotreatment of textile waste effluents in Nigeria: biodecolorization and biodegradation of textile dye. J Appl Sci Environ Manag 15:79–86

    CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Al-Fawwaz AT, Abdullah M (2016) Decolorization of Methylene Blue and Malachite Green by immobilized Desmodesmus sp. isolated from North Jordan. Int J Environ Sci Dev 7:95–99

    Article  CAS  Google Scholar 

  • AL-Rajhia S, Raut N, AL-Qasmi F et al (2012) Treatments of industrials wastewater by using microalgae. 2012 International Conference on Environmental, Biomedical and Biotechnology IPCBEE 41, IACSIT Press, Singapore

    Google Scholar 

  • Amaral PFF, Fernandes DLA, Tavares APM et al (2004) Decolorization of dyes from textile wastewater by Trametes versicolor. Environ Technol 25:1313–1320

    Article  CAS  Google Scholar 

  • Anastasi A, Parato B, Spina F et al (2011) Decolorization and detoxification in the fungal treatment of textile wastewaters from dyeing processes. New Biotechnol 29:38–45

    Article  CAS  Google Scholar 

  • Anjaneya O, Souche SY, Santoshkumar M et al (2011) Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. J Hazard Mater 190:351–358

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, AWWA and WEF, Washington, DC

    Google Scholar 

  • Arulazhagan P (2016) A study on microbial decolorization of reactive red M88 by Bacillus subtilis isolated from dye contaminated soil samples. Int J Curr Res Biol Med 1:1–13

    Google Scholar 

  • Asgher M, Jamil F, Iqbal HMN (2012) Bioremediation potential of mixed white rot culture of Pleurotus ostreatus IBL-02 and Coriolus versicolor IBL-04 for textile industry wastewater. J Bioremediation Biodegrad S1:007

    Google Scholar 

  • Ashfaq A, Khatoon A (2014) Waste management of textiles: a solution to the environmental pollution. Int J Curr Microbiol App Sci 3(7):780–787

    CAS  Google Scholar 

  • Ayed L, Mahdhi A, Cheref A et al (2011) Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: biotoxicity and metabolites characterization. Desalination 274:272–277

    Article  CAS  Google Scholar 

  • Azarpira H, Behdarv P, Dhumal K et al (2014) Potential use of cyanobacteria species in phycoremediation of municipal wastewater. Int J Biosci 4:105–111

    CAS  Google Scholar 

  • Babu BR, Parande AK, Raghu S et al (2007) Cotton textile processing: waste generation and effluent treatment. J Cotton Sci 11:141–153

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution. Ecol Phytochem Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJ, Walker PI (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants evolutionary aspects. CRC Press, Boca Raton, pp 155–178

    Google Scholar 

  • Banasova V, Horak O (2008) Heavy metal content in Thalspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int J Environ Pollut 33:133–145

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile dye-containing effluents: a review. Bioresour Technol 58(3):217–227

    Article  CAS  Google Scholar 

  • Barry SAS, Clark SC (1978) Problems of interpreting the relationship between the amounts of lead and zinc in plants and soil on metalliferous wastes. New Phytol 81:773–783

    Article  CAS  Google Scholar 

  • Barzanti R, Colzi I, Arnetoli M et al (2011) Cadmium phytoextraction potential of different Alyssum species. J Hazard Mater 196:66–72

    Article  CAS  Google Scholar 

  • Baumann A (1885) Das Verhalten von Zinksatzen gegen Pflanzen und im Boden. Landwirtsch Vers Statn 31:1–53

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S et al (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Boyd RS, Jaffré T, Odom JW (1999) Variation in nickel content in the nickel-hyperaccumulating shrub Psychofria douarrei (Rubiaceae) from New Caledonia. Blotroplca 31:403–410

    Google Scholar 

  • Brahmbhatt NH, Jasrai RT (2015) Biodegradation of reactive dyes by two microalgal species. Int J Sci Res 4:1697–1702

    Google Scholar 

  • Brahmbhatt NH, Jasrai RT (2016) The role of algae in bioremediation of textile effluent. Int J Eng Res Gen Sci 4:443–453

    Google Scholar 

  • Bromley-Challenor KCA, Knapp JS, Zhang Z et al (2000) Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Res 34:4410–4418

    Article  CAS  Google Scholar 

  • Brooks V (1998) Phytochemistry of hyperaccumulators plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 15–54

    Google Scholar 

  • Burnell JN (1981) Selenium metabolism in Neptunia amplexicaulis. Plant Physiol 67:316–324

    Article  CAS  Google Scholar 

  • Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajor-caju. Enzym Microb Technol 29:473–477

    Article  CAS  Google Scholar 

  • Chan GF, Rashid NAA, Koay LL et al (2011) Identification and optimization of novel NAR-1 bacterial consortium for the biodegradation of orange II. Insight Biotechnol 1:7–16

    Article  Google Scholar 

  • Chan GF, Rashid NAA, Chua LS et al (2012) Communal microaerophilic-aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium. Bioresour Technol 105:48–59

    Article  CAS  Google Scholar 

  • Chang JS, Kuo TS (2000) Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol 75:107–111

    Article  CAS  Google Scholar 

  • Cheriaa J, Khaireddine M, Rouabhia M et al (2012) Removal of triphenylmethane dyes by bacterial consortium. Sci World J 2012:512454

    Article  CAS  Google Scholar 

  • Chitra MJ, Das A, Goel M et al (2013) Microalgae application for treatment of textile effluents. Res J Pharm Biol Chem Sci 4:1602–1606

    CAS  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    Article  CAS  Google Scholar 

  • Couto SR, Rivela I, Munoz MR et al (2000) Stimulation of lignolytic enzyme production and the ability to decolorize Poly R-448 in semisolid-state cultures of Phanerochaete chrysosporium. Bioresour Technol 74:159–164

    Article  CAS  Google Scholar 

  • Das A, Mishra S, Verma VK (2015) Enhanced biodecolorization of textile dye remazol navy blue using an isolated bacterial strain Bacillus pumilus HKG212 under improved culture conditions. J Biochem Technol 6:962–969

    Google Scholar 

  • de-Bashan LE, Hernandez JP, Nelson KN et al (2010) Growth of quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure. Microb Ecol 60:915–927

    Article  CAS  Google Scholar 

  • Deng D, Guo J, Zeng G et al (2008) Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int Biodeterior Biodegrad 62(3):263–269

    Article  CAS  Google Scholar 

  • Deram A, Patit D, Robinson B et al (2000) Natural and induced heavy metal accumulation by Arrhenatherum elatius: implications for phytoremediation. Commun Soil Sci Plant Anal 31:413–421

    Article  CAS  Google Scholar 

  • Dos Santos AB, Bisschops IAE, Cervantes FJ (2006) Closing process water cycles and product recovery in textile industry: perspective for biological treatment. In: Cervantes FJ, Van Haandel AC, Pavlostathis SG (eds) Advanced biological treatment processes for industrial wastewaters, vol 1. International Water Association, London, pp 298–320

    Google Scholar 

  • El-Kassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res 40:301–308

    Article  Google Scholar 

  • Enayatizamir N, Tabandeh F, Rodriguez-Couto (2011) Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium. Bioresour Technol 102(22):10359–10362

    Article  CAS  Google Scholar 

  • EPA (1997) Profile of the Textile Industry Environmental Protection Agency. EPA, Washington DC

    Google Scholar 

  • Evangelista-Barreto NS, Albuquerque CD, Vieira RHSF et al (2009) Co-metabolic decolorization of the reactive azo dye Orange II by Geobacillus stearothermophilus UCP 986. Text Res J 79:1266–1273

    Article  CAS  Google Scholar 

  • Feng Y1, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105

    Article  CAS  Google Scholar 

  • Fernando ES, Quimado MO, Doronila AI (2014) Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island. Philipp PhytoKeys 37:1–13

    Article  Google Scholar 

  • Ferrell J, Sarisky-Reed V (2008) A technology roadmap resulting from the National Algal Biofuels Workshop, College Park, Maryland. National Algal Biofuels Technology Roadmap, 9–10 December 2008

    Google Scholar 

  • Forss J, Welander U (2011) Biodegradation of azo and anthraquinone dyes in continuous systems. Int Biodeterior Biodegrad 65:227–237

    Article  CAS  Google Scholar 

  • Francesconia K, Visoottiviseth P, Sridokchan W et al (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Article  Google Scholar 

  • Franciscon E, Zille A, Fantinatti-Garboggini F et al (2009) Microaerophilic aerobic sequential decolorization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44:446–452

    Article  CAS  Google Scholar 

  • Freeman JL, Marcus MA, Fakra SC, Devonshire J, McGrath SP et al (2012) Selenium hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by se-resistant, se-excluding wasp and beetle seed herbivores. PLoS One 7:e50516. https://doi.org/10.1371/journal.pone.0050516

    Article  CAS  Google Scholar 

  • Garcia-Leston M, Kidd PS, Becerra-Castro C et al (2007) Changes in metal fractionation in the rhizosphere of the Ni hyperaccumulator. Alyssum serpyllifolium subsp. lusitanicum. In: Zhu Y, Lepp N, Naidu R (eds) Biogeochemistry of trace elements: environmental protection, remediation and human health. Tsinghua University Press, Beijing, pp 192–193

    Google Scholar 

  • Gardea-Torresday JL, De la Rosa G, Peralta-Videa JR et al (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumble weed (Salsola kali). Arch Environ Contam Toxicol 48:225–232

    Article  CAS  Google Scholar 

  • Gasperi J, Mathieu C, Vincent R et al (2008) Combined sewer overflow quality and EU Water Framework Directive. Sci Total Environ 2008:124–128

    Google Scholar 

  • Gingell R, Walker R (1971) Mechanisms of azo reduction by Streptococcus faecalis II. The role of soluble flavins. Xenobiotica 1(3):231–239

    Article  CAS  Google Scholar 

  • Giwa A, Giwa FJ, Ifu BJ (2012) Microbial decolorization of an anthraquinone dye C.I. Reactive Blue 19 using Bacillus cereus. Am Chem Sci J 2(2):60–68

    Article  CAS  Google Scholar 

  • Grassi E, Scodeller P, Filiel N et al (2011) Potential of Trametes trogii culture fluids and its purified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int Biodeterior Biodegrad 65:635–643

    Article  CAS  Google Scholar 

  • Green FB, Lundquist TJ, Oswald WJ (1995) Energetics of advanced integrated wastewater pond systems. Water Sci Technol 31:9–20

    Article  CAS  Google Scholar 

  • Gupta VK, Khamparia S, Tyagi I et al (2015) Decolorization of mixture of dyes: a critical review. Glob J Environ Sci Manag 1(1):71–94

    CAS  Google Scholar 

  • Gurav AA, Ghosh JS, Kulkarni GS (2011) Decolorization of anthroquinone based dye Vat Red 10 by Pseudomonas desmolyticum NCIM 2112 and Galactomyces geotrichum MTCC 1360. Int J Biotech Mol Biol Res 2(6):93–97

    CAS  Google Scholar 

  • Hadiyanto, Pradana AB, Buchori L et al (2014) Biosorption of heavy metal Cu2+ and Cr2+ in textile wastewater by using immobilized algae. Res J Appl Sci Eng Technol 7:3539–3543

    CAS  Google Scholar 

  • Hammel C, Kyriakopoulos A, Behne D et al (1996) Protein-bound selenium in the seeds of coco de mono (Lecythis ollaria). J Trace Elem Med Biol 10:96–102

    Article  CAS  Google Scholar 

  • Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755

    Article  CAS  Google Scholar 

  • Hu TL (1994) Decolorization of reactive azo dyes by transformation with Pseudomonas luteola. Bioresour Technol 49:47–51

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR et al (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Irshad M, Ahmad S, Pervez A et al (2015) Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan. Int J Phytoremediation 17:154–158

    Article  CAS  Google Scholar 

  • Jadhav JP, Kalyani DC, Telke AA et al (2010) Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals and toxicity from textile dye effluent. Bioresour Technol 101:165–173

    Article  CAS  Google Scholar 

  • Jaffre T, Brooks RR, Trow JM (1979) Hyperaccumulation of nickel by Geissois species. Plant Soil 51:157–161

    Article  CAS  Google Scholar 

  • James AC, Xin G, Doty SL et al (2009) A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater. Environ Pollut 157:2564–2569

    Article  CAS  Google Scholar 

  • Jefferson B, Laine A, Parsons S et al (1999) Technologies for domestic wastewater recycling. Urban Water 1:285–292

    Article  CAS  Google Scholar 

  • Joshi T, Iyengar L, Singh K et al (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolorization of structurally different azo dyes. Bioresour Technol 99:7115–7121

    Article  CAS  Google Scholar 

  • Kachenko AG, Bhatia NP, Siegele R et al (2009) Nickel, Zn and Cd localization in seeds of metal hyperaccumulators using l-PIXE spectroscopy. Nucl Inst Meth Phys Res B 267:2176–2180

    Article  CAS  Google Scholar 

  • Kaushik P, Malik A (2010) Effect of nutritional conditions on dye removal from textile effluent by Aspergillus lentulus. World J Microbiol Biotechnol 26:1957–1964

    Article  CAS  Google Scholar 

  • Keharia H, Madamvar D (2003) Bioremediation concept for treatment of dye containing waste water: a review. Indian J Exp Biol 41:1068–1075

    CAS  Google Scholar 

  • Khalid A, Arshad M, Crowley DE (2008) Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl Microbiol Biotechnol 79:1053–1059

    Article  CAS  Google Scholar 

  • Khan S, Malik A (2016) Degradation of Reactive Black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol 62:220–232

    Article  CAS  Google Scholar 

  • Khehra MS, Saini HS, Sharma DK et al (2005) Decolorization of various azo dyes by bacterial consortium. Dyes Pigments 67:55–61

    Article  CAS  Google Scholar 

  • Kuberan T, Anburaj J, Sundaravadivelan C et al (2011) Biodegradation of azo dye by Listeria sp. Int J Environ Sci 1:1760–1770

    Google Scholar 

  • Kulkarni MG, Stirk WA, Southway C et al (2013) Plant growth regulators enhance gold uptake in Brassica juncea. Int J Phytoremediation 15:117–126

    Article  CAS  Google Scholar 

  • Kulla HG, Klausener F, Meyer U et al (1983) Interference of aromatic sulfo groups in the microbial degradation of the azo dyes Orange I and Orange II. Arch Microbiol 135:1–7

    Article  CAS  Google Scholar 

  • Kumar MNVR, Sridhari TR, Bhavani KD et al (1998) Trends in color removal from textile mill effluents. Colorage 40:25–34

    Google Scholar 

  • Lange B, van der Ent A, Baker AJM et al (2016) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551

    Article  CAS  Google Scholar 

  • Lin J, Zhang X, Li Z (2010) Biodegradation of Reactive Blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour Technol 101(1):34–40

    Article  CAS  Google Scholar 

  • Malaisse F, Grégoire J (1978) Contributionà laphytogéochimiede laMinede l’Étoile (Shaba, Zaïre). Bull Soc R Bot Belg 111:252–260

    CAS  Google Scholar 

  • Malaisse F, Grégoire J, Morrison RS et al (1979) Copper and cobalt in vegetation of Fungurume. Shaba Province, Zaïre. Oikos 33:472–478

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Sikdar S et al (2011) Sustainability considerations of biodiesel based on supply chain analysis. Clean Techn Environ Policy 13:655–671

    Article  Google Scholar 

  • Miranda RDCMD, Gomes EDB, Pereira N et al (2013) Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181. Bioresour Technol 142:361–367

    Article  CAS  Google Scholar 

  • Modi HA, Rajput G, Ambasana C (2010) Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresour Technol 101:6580–6583

    Article  CAS  Google Scholar 

  • Mohamed WSED (2016) Isolation and screening of reactive dye decolorizing bacterial isolates from textile industry effluent. Int J Microbiol Res 7:1–8

    Google Scholar 

  • Mohammad IA, Loganathan M, Gastian Theodar PA (2012) Effect of bio adsorbents in removal of color and toxicity of textile and leather dyes. J Ecol Biotechnol 4:1–10

    Google Scholar 

  • Mohan SV, Rao CN, Prasad KK, Karthikeyan J (2002) Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manag 22:575–582

    Article  Google Scholar 

  • Moradi AB, Swoboda S, Robinson B et al (2010) Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot 69:24–31

    Article  CAS  Google Scholar 

  • Mounicou S, Shah M, Meija J et al (2006) Localization and speciation of selenium and mercury in Brassica juncea: implications for Se-Hg antagonism. J Anal At Spectrom 21:404–412

    Article  CAS  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown shewanella putrefaciens MR-1. J Bacteriol 174(11):3429–3438

    Article  CAS  Google Scholar 

  • Nandhini L, Bhagat BR, Malliga P (2014) Efficacy of marine cyanobacterium Lyngbya SP. 90901 with ground nut shell in textile dye industry effluent. Int Res Appl 2:121–132

    Google Scholar 

  • Nevine KA (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223:152–161

    Article  CAS  Google Scholar 

  • Nigam P, Armour G, Banat IM et al (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour Technol 72:219–226

    Article  CAS  Google Scholar 

  • Ola IO, Akintokun AK, Akpan I et al (2010) Aerobic decolorization of two reactive azo dyes under varying carbon and nitrogen source by Bacillus cereus. Afr J Biotechnol 9:672–677

    Article  CAS  Google Scholar 

  • Olukanni OD, Osuntoki AA, Gbenle GO (2006) Textile effluent biodegradation potentials of textile effluent-adapted and non-adapted bacteria. Afr J Biotechnol 5(20):1980–1984

    CAS  Google Scholar 

  • Olukanni OD, Osuntoki A, Gbenle GO (2009) Decolorization of azo dyes by strain of Micrococcus isolated from a reuse dump soil. J Biotechnol 8:442–448

    Article  CAS  Google Scholar 

  • Olukanni OD, Adenopo A, Awotula AO et al (2013) Biodegradation of Malachite Green by extracellular laccase producing Bacillus thuringiensis RUN1. J Basic Appl Sci 9:543–549

    Google Scholar 

  • Padmavathy S, Sandhyan S, Swaminathan K et al (2003) Aerobic decolorization of reactive azo dyes in presence of cosubstrates. Chem Biochem Eng 17:147–151

    CAS  Google Scholar 

  • Pan H, Feng J, Cerniglia CE (2011) Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus. J Ind Microbiol Biotechnol 38:1729–1738

    Article  CAS  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  • Park JB, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  Google Scholar 

  • Parshetti G, Kalme S, Saratale G et al (2006) Biodegradation of Malachite Green by Kocuria rosea MTCC 1532. Acta Chim Slov 53:492–498

    CAS  Google Scholar 

  • Phugare SS, Kalyani DC, Patil AV et al (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186:713–723

    Article  CAS  Google Scholar 

  • Puschenreiter M, Wieczorek S, Horak O et al (2003) Chemical changes in the rhizosphere of metal hyperaccumulator and excluder Thlaspi species. J Plant Nutr Soil Sci 166:579–584

    Article  CAS  Google Scholar 

  • Qiu R, Fang X, Tang Y et al (2006) Zinc hyperaccumulation and uptake by Potentilla Griffithii Hook. Int J Phytoremediation 8:299–310

    Article  CAS  Google Scholar 

  • Rahman MM, Azirun SM, Boyce AN (2013) Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PLoS One 8(5):e62941. https://doi.org/10.1371/journal.pone.0062941

    Article  CAS  Google Scholar 

  • Rajee O, Patterson J (2011) Decolorization of azo dye (Orange MR) by an autochthonous bacterium Micrococcus sp. DBS 2. Indian J Microbiol 51:159–163

    Article  CAS  Google Scholar 

  • Rana S, Sharma R, Chandra S (2013) Microbial degradation of synthetic textile dyes: a cost effective and eco-friendly approach. Afr J Microbiol Res 7(24):2983–2989

    Article  CAS  Google Scholar 

  • Reeves RD (1979) Hyperaccumulation of trace elements by plants. In: Phytoremediation of metal-contaminated soils. pp 25–52

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 193–221

    Google Scholar 

  • Reeves RD, Macfarlane RM, Brooks RR (1983) Accumulation of nickel and zinc by western North American genera containing serpentine-tolerant species. Am J Bot 70:1297–1303

    Article  CAS  Google Scholar 

  • Reeves RD, Adiguzel N, Baker AJM (2009) Nickel hyperaccumulation in Bornmuellera kiyakii and associated plants of the Brassicaceae from Kızıldaäÿ Derebucak (Konya), Turkey. Turk J Bot 33:33–40

    Google Scholar 

  • Robinson T, McMullan G, Marchant R et al (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Roy R, Fakhruddin ANM, Khatun R et al (2010) Reduction of cod and ph of textile industrial effluents by aquatic macrophytes and algae. J Bangladesh Acad Sci 34:9–14

    CAS  Google Scholar 

  • Ruiz J, Alvarez P, Arbib Z et al (2011) Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremediation 13:884–896

    Article  CAS  Google Scholar 

  • Ruiz-Arias A, Juarez-Ramirez C, de los Cobos-Vasconcelos D et al (2010) Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multi stage packed-bed BAC reactor. Appl Biochem Biotechnol 162:1689–1707

    Article  CAS  Google Scholar 

  • Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66(4):1429–1434

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS et al (2010) Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 21:999–1015

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS et al (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    Article  CAS  Google Scholar 

  • Saratale RG, Gandhi SS, Purakar MV et al (2013) Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. J Biosci Bioeng 115:658–667

    Article  CAS  Google Scholar 

  • Sarayu K, Sandhya S (2010) Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol 160(4):1241–1253

    Article  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  Google Scholar 

  • Schnoor JL (1997) Phytoremediation, TE-97-01. Ground-Water Remediation Technologies Analysis Center, Pittsburgh

    Google Scholar 

  • Sedighi M, Karimi A, Vahabzadeh F (2009) Involvement of ligninolytic enzymes of Phanerochaete chrysosporium in treating the textile effluent containing Astrazon Red FBL in a packed-bed bioreactor. J Hazard Mater 169:88–93

    Article  CAS  Google Scholar 

  • Shedbalkar U, Jadhav JP (2011) Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol Bioprocess Eng 16:196–204

    Article  CAS  Google Scholar 

  • Singh PK, Singh RL (2017) Bio-removal of azo dyes: a review. Int J Appl Sci Biotechnol 5(2):108–126

    Article  Google Scholar 

  • Singh RP, Singh PK, Singh RL (2014) Bacterial decolorization of textile azo dye Acid Orange by Staphylococcus hominis RMLRT03. Toxicol Int 21(2):160–166

    Article  CAS  Google Scholar 

  • Singh RL, Gupta R, Singh RP (2015a) Microbial degradation of textile dyes for environmental safety. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 249–285

    Chapter  Google Scholar 

  • Singh RL, Singh PK, Singh RP (2015b) Enzymatic decolorization and degradation of azo dyes – a review. Int Biodeterior Biodegrad 104:21–31

    Article  CAS  Google Scholar 

  • Singh RP, Singh PK, Singh RL (2017a) Present status of biodegradation of textile dyes. Curr Trends Biomed Eng Biosci 3(4):555618

    Article  Google Scholar 

  • Singh RP, Singh PK, Singh RL (2017b) Role of azoreductases in bacterial decolorization of azo dyes. Curr Trends Biomed Eng Biosci 9(3):555764

    Article  Google Scholar 

  • Slokar YM, Le Marechal AM (1997) Methods of decoloration of textile wastewaters. Dyes Pigments 37:335–356

    Article  Google Scholar 

  • Sponza DT, Isik M (2004) Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge. Enzym Microb Technol 34:147–158

    Article  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  Google Scholar 

  • Sudhakar P, Palaniappan R, Gowrie, Shankar R (2002) Degradation of azodye (Black-E) by an indigenous bacterium Pseudomonas sp., BSP-4. Asian J Microbiol Biotechnol Environ 2:203–208

    Google Scholar 

  • Vineta S (2014) Methods for waste waters treatment in textile industry. International Scientific Conference, Gabrovo, 21–22 November

    Google Scholar 

  • Wang J, Zhao FJ, Meharg AA et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate and arsenic speciation1. Plant Physiol 130:1552–1561

    Article  CAS  Google Scholar 

  • Wei L, Luo CL, Li XD et al (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L and Sorghum sudanense L. Arch Environ Contam Toxicol 55:238–246

    Article  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M et al (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    Article  CAS  Google Scholar 

  • Wesenberg D, Buchon F, Agathos SN (2002) Degradation of dyecontaining textile effluent by the agaric white-rot fungus Clitocybula dusenii. Biotechnol Lett 24:989–993

    Article  CAS  Google Scholar 

  • Yesiladali SK, Pekin G, Bermek H et al (2006) Bioremediation of textile azo dyes by Trichophyton rubrum LSK-27. World J Microbiol Biotechnol 22:1027–1031

    Article  CAS  Google Scholar 

  • Yu L, Li WW, Lam MH et al (2012) Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production. Appl Microbiol Biotechnol 95:255–262

    Article  CAS  Google Scholar 

  • Zhao X, Hardin IR (2007) HPLC and Spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes Pigments 73:322–325

    Article  CAS  Google Scholar 

  • Zhiqiang C, Wenjie Z, Jiangtao M (2015) Biodegradation of azo dye Disperse Orange S-RL by a newly isolated strain Acinetobacter sp. SRL8. Water Environ Res 87:516–523

    Article  CAS  Google Scholar 

  • Zhuo R, Ma L, Fan F et al (2011) Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. J Hazard Mater 192:855–873

    Article  CAS  Google Scholar 

  • Zollinger H (1987) Color chemistry-synthesis, properties and application of organic dyes and pigment. VCH Publishers, New York, pp 92–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.P., Singh, P.K., Gupta, R., Singh, R.L. (2019). Treatment and Recycling of Wastewater from Textile Industry. In: Singh, R., Singh, R. (eds) Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-13-1468-1_8

Download citation

Publish with us

Policies and ethics