Skip to main content

Diabetes in Liver Disease

  • Chapter
  • First Online:
  • 325 Accesses

Abstract

A high prevalence of diabetes mellitus has been reported in patients with chronic liver disease (CLD). Increasing evidence suggests that diabetes mellitus and its treatment have a significant impact on the clinical course of CLD. This review summarized the prevalence, diagnosis, and mechanisms of diabetes mellitus in patients with CLD. We also reviewed the clinical impact and therapeutic strategy for diabetes mellitus in patients with CLD. Recent progress using antidiabetic medication in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and hepatocellular carcinoma was also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMPK:

AMP-activated kinase

CGMS:

continuous glucose monitoring system

CI:

confidence interval

CLD:

chronic liver disease

DPP4:

dipeptidyl peptidase IV

HbA1c:

glycated hemoglobin

HBV:

hepatitis B virus

HCC:

hepatocellular carcinoma

HCV:

hepatitis C virus

HR:

hazard ratio

IGF-1:

insulin-like growth factor-1

IGT:

impaired glucose tolerance

Loxl2:

lysyl oxidase like 2

MAPK:

mitogen-activated protein kinase

NAFLD:

non-alcoholic fatty liver disease

OR:

odds ratio

PNPLA3:

patatin-like phospholipase domain-containing 3

QOL:

quality of life

SGLT2:

sodium glucose cotransporter 2

VLDL:

very-low-density lipoprotein

References

  1. Megyesi C, Samols E, Marks V. Glucose tolerance and diabetes in chronic liver disease. Lancet. 1967;2:1051–6.

    Article  CAS  PubMed  Google Scholar 

  2. Braganca AC, Alvares-da-Silva MR. Prevalence of diabetes mellitus and impaired glucose tolerance in patients with decompensated cirrhosis being evaluated for liver transplantation: the utility of oral glucose tolerance test. Arq Gastroenterol. 2010;47:22–7.

    Article  PubMed  Google Scholar 

  3. Jeon HK, Kim MY, Baik SK, Park HJ, Choi H, Park SY, et al. Hepatogenous diabetes in cirrhosis is related to portal pressure and variceal hemorrhage. Dig Dis Sci. 2013;58:3335–41.

    Article  PubMed  Google Scholar 

  4. Garcia-Compean D, Jaquez-Quintana JO, Lavalle-Gonzalez FJ, Gonzalez-Gonzalez JA, Munoz-Espinosa LE, Villarreal-Perez JZ, et al. Subclinical abnormal glucose tolerance is a predictor of death in liver cirrhosis. World J Gastroenterol. 2014;20:7011–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nishida T. Diagnosis and clinical implications of diabetes in liver cirrhosis: a focus on the oral glucose tolerance test. J Endocr Soc. 2017;1:886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alavian SM, Hajarizadeh B, Nematizadeh F, Larijani B. Prevalence and determinants of diabetes mellitus among Iranian patients with chronic liver disease. BMC Endocr Disord. 2004;4:4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fabiani S, Fallahi P, Ferrari SM, Miccoli M, Antonelli A. Hepatitis C virus infection and development of type 2 diabetes mellitus: systematic review and meta-analysis of the literature. Rev Endocr Metab Disord. 2018;19(4):405–20.

    Article  PubMed  Google Scholar 

  8. Thuluvath PJ, John PR. Association between hepatitis C, diabetes mellitus, and race. A case-control study. Am J Gastroenterol. 2003;98:438–41.

    PubMed  Google Scholar 

  9. Rouabhia S, Malek R, Bounecer H, Dekaken A, Bendali Amor F, Sadelaoud M, et al. Prevalence of type 2 diabetes in Algerian patients with hepatitis C virus infection. World J Gastroenterol. 2010;16:3427–31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mangia A, Schiavone G, Lezzi G, Marmo R, Bruno F, Villani MR, et al. HCV and diabetes mellitus: evidence for a negative association. Am J Gastroenterol. 1998;93:2363–7.

    Article  CAS  PubMed  Google Scholar 

  11. Labropoulou-Karatza C, Goritsas C, Fragopanagou H, Repandi M, Matsouka P, Alexandrides T. High prevalence of diabetes mellitus among adult beta-thalassaemic patients with chronic hepatitis C. Eur J Gastroenterol Hepatol. 1999;11:1033–6.

    Article  CAS  PubMed  Google Scholar 

  12. Knobler H, Schihmanter R, Zifroni A, Fenakel G, Schattner A. Increased risk of type 2 diabetes in noncirrhotic patients with chronic hepatitis C virus infection. Mayo Clin Proc. 2000;75:355–9.

    Article  CAS  PubMed  Google Scholar 

  13. Caronia S, Taylor K, Pagliaro L, Carr C, Palazzo U, Petrik J, et al. Further evidence for an association between non-insulin-dependent diabetes mellitus and chronic hepatitis C virus infection. Hepatology. 1999;30:1059–63.

    Article  CAS  PubMed  Google Scholar 

  14. Ortiz-Lopez C, Lomonaco R, Orsak B, Finch J, Chang Z, Kochunov VG, et al. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care. 2012;35:873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imamura Y, Uto H, Hiramine Y, Hosoyamada K, Ijuin S, Yoshifuku S, et al. Increasing prevalence of diabetes mellitus in association with fatty liver in a Japanese population. J Gastroenterol. 2014;49:1406–13.

    Article  CAS  PubMed  Google Scholar 

  16. Nakahara T, Hyogo H, Yoneda M, Sumida Y, Eguchi Y, Fujii H, et al. Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol. 2014;49:1477–84.

    Article  CAS  PubMed  Google Scholar 

  17. Newton KP, Hou J, Crimmins NA, Lavine JE, Barlow SE, Xanthakos SA, et al. Prevalence of prediabetes and type 2 diabetes in children with nonalcoholic fatty liver disease. JAMA Pediatr. 2016;170:e161971.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cho JM, Oh SH, Kim KM, Namgung JM, Kim DY, Song GW, et al. Prevalence and treatment of new-onset diabetes mellitus after liver transplantation in Korean children: a single-center study. Transplant Proc. 2014;46:873–5.

    Article  CAS  PubMed  Google Scholar 

  19. Parolin MB, Zaina FE, Araujo MV, Kupka E, Coelho JC. Prevalence of new-onset diabetes mellitus in Brazilian liver transplant recipients: association with HCV infection. Transplant Proc. 2004;36:2776–7.

    Article  CAS  PubMed  Google Scholar 

  20. Saab S, Shpaner A, Zhao Y, Brito I, Durazo F, Han S, et al. Prevalence and risk factors for diabetes mellitus in moderate term survivors of liver transplantation. Am J Transplant. 2006;6:1890–5.

    Article  CAS  PubMed  Google Scholar 

  21. Honda M, Asonuma K, Hayashida S, Suda H, Ohya Y, Lee KJ, et al. Incidence and risk factors for new-onset diabetes in living-donor liver transplant recipients. Clin Transpl. 2013;27:426–35.

    Article  Google Scholar 

  22. Anastacio LR, Ribeiro Hde S, Ferreira LG, Lima AS, Vilela EG, Toulson Davisson Correia MI. Incidence and risk factors for diabetes, hypertension and obesity after liver transplantation. Nutr Hosp. 2013;28:643–8.

    PubMed  Google Scholar 

  23. Hara Y, Kawagishi N, Nakanishi W, Tokodai K, Nakanishi C, Miyagi S, et al. Prevalence and risk factors of obesity, hypertension, dyslipidemia and diabetes mellitus before and after adult living donor liver transplantation. Hepatol Res. 2015;45:764–70.

    Article  PubMed  Google Scholar 

  24. Navasa M, Bustamante J, Marroni C, Gonzalez E, Andreu H, Esmatjes E, et al. Diabetes mellitus after liver transplantation: prevalence and predictive factors. J Hepatol. 1996;25:64–71.

    Article  CAS  PubMed  Google Scholar 

  25. Chamberlain JJ, Herman WH, Leal S, Rhinehart AS, Shubrook JH, Skolnik N, et al. Pharmacologic therapy for type 2 diabetes: synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2017;166:572–8.

    Article  PubMed  Google Scholar 

  26. Trenti T, Cristani A, Cioni G, Pentore R, Mussini C, Ventura E. Fructosamine and glycated hemoglobin as indices of glycemic control in patients with liver cirrhosis. Ric Clin Lab. 1990;20:261–7.

    CAS  PubMed  Google Scholar 

  27. Araki E, Haneda M, Kasuga M, Nishikawa T, Kondo T, Ueki K, et al. New glycemic targets for patients with diabetes from the Japan Diabetes Society. J Diabetes Investig. 2017;8:123–5.

    Article  PubMed  Google Scholar 

  28. Nomura Y, Nanjo K, Miyano M, Kikuoka H, Kuriyama S, Maeda M, et al. Hemoglobin A1 in cirrhosis of the liver. Diabetes Res. 1989;11:177–80.

    CAS  PubMed  Google Scholar 

  29. Cacciatore L, Cozzolino G, Giardina MG, De Marco F, Sacca L, Esposito P, et al. Abnormalities of glucose metabolism induced by liver cirrhosis and glycosylated hemoglobin levels in chronic liver disease. Diabetes Res. 1988;7:185–8.

    CAS  PubMed  Google Scholar 

  30. Nadelson J, Satapathy SK, Nair S. Glycated hemoglobin levels in patients with decompensated cirrhosis. Int J Endocrinol. 2016;2016:8390210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Currie CJ, Poole CD, Papo NL. An overview and commentary on retrospective, continuous glucose monitoring for the optimisation of care for people with diabetes. Curr Med Res Opin. 2009;25:2389–400.

    Article  CAS  PubMed  Google Scholar 

  32. Kawaguchi T, Itou M, Taniguchi E, Sakata M, Abe M, Koga H, et al. Serum level of free fatty acids is associated with nocturnal hypoglycemia in cirrhotic patients with HCV infection: a pilot study. Hepatogastroenterology. 2011;58:103–8.

    CAS  PubMed  Google Scholar 

  33. Isoda H, Takahashi H, Eguchi Y, Kojima M, Inoue K, Murayama K, et al. Re-evaluation of glycated hemoglobin and glycated albumin with continuous glucose monitoring system as markers of glycemia in patients with liver cirrhosis. Biomed Rep. 2017;6:51–6.

    Article  CAS  PubMed  Google Scholar 

  34. Ochi T, Kawaguchi T, Nakahara T, Ono M, Noguchi S, Koshiyama Y, et al. Differences in characteristics of glucose intolerance between patients with NAFLD and chronic hepatitis C as determined by CGMS. Sci Rep. 2017;7:10146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kawaguchi T, Yoshida T, Harada M, Hisamoto T, Nagao Y, Ide T, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165:1499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawaguchi T, Nagao Y, Tanaka K, Ide T, Harada M, Kumashiro R, et al. Causal relationship between hepatitis C virus core and the development of type 2 diabetes mellitus in a hepatitis C virus hyperendemic area: a pilot study. Int J Mol Med. 2005;16:109–14.

    CAS  PubMed  Google Scholar 

  37. Kawaguchi T, Sata M. Importance of hepatitis C virus-associated insulin resistance: therapeutic strategies for insulin sensitization. World J Gastroenterol. 2010;16:1943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawaguchi T, Taniguchi E, Itou M, Sumie S, Yamagishi S, Sata M. The pathogenesis, complications and therapeutic strategy for hepatitis C virus-associated insulin resistance in the era of anti-viral treatment. Rev Recent Clin Trials. 2010;5:147–57.

    Article  PubMed  Google Scholar 

  39. Kawaguchi T, Taniguchi E, Itou M, Sakata M, Sumie S, Sata M. Insulin resistance and chronic liver disease. World J Hepatol. 2011;3:99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kawaguchi T, Sata M. Glucose metabolism disorder: a risk factor for hepatocellular carcinoma. Nihon Shokakibyo Gakkai Zasshi. 2012;109:544–54.

    PubMed  Google Scholar 

  41. Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126:840–8.

    Article  CAS  PubMed  Google Scholar 

  42. Pazienza V, Clement S, Pugnale P, Conzelman S, Foti M, Mangia A, et al. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. Hepatology. 2007;45:1164–71.

    Article  CAS  PubMed  Google Scholar 

  43. Pascarella S, Clement S, Guilloux K, Conzelmann S, Penin F, Negro F. Effects of hepatitis C virus on suppressor of cytokine signaling mRNA levels: comparison between different genotypes and core protein sequence analysis. J Med Virol. 2011;83:1005–15.

    Article  CAS  PubMed  Google Scholar 

  44. Ahmed QL, Manzoor S, Tariq M, Khalid M, Ashraf W, Parvaiz F, et al. Hepatitis C virus infection in vitro triggers endoplasmic reticulum stress and downregulates insulin receptor substrates 1 and 2 through upregulation of cytokine signaling suppressor 3. Acta Virol. 2014;58:238–44.

    Article  CAS  PubMed  Google Scholar 

  45. Bose SK, Shrivastava S, Meyer K, Ray RB, Ray R. Hepatitis C virus activates the mTOR/S6K1 signaling pathway in inhibiting IRS-1 function for insulin resistance. J Virol. 2012;86:6315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bernsmeier C, Duong FH, Christen V, Pugnale P, Negro F, Terracciano L, et al. Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. J Hepatol. 2008;49:429–40.

    Article  CAS  PubMed  Google Scholar 

  47. del Campo JA, Garcia-Valdecasas M, Rojas L, Rojas A, Romero-Gomez M. The hepatitis C virus modulates insulin signaling pathway in vitro promoting insulin resistance. PLoS One. 2012;7:e47904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gastaldi G, Goossens N, Clement S, Negro F. Current level of evidence on causal association between hepatitis C virus and type 2 diabetes: a review. J Adv Res. 2017;8:149–59.

    Article  CAS  PubMed  Google Scholar 

  49. Kasai D, Adachi T, Deng L, Nagano-Fujii M, Sada K, Ikeda M, et al. HCV replication suppresses cellular glucose uptake through down-regulation of cell surface expression of glucose transporters. J Hepatol. 2009;50:883–94.

    Article  CAS  PubMed  Google Scholar 

  50. Lerat H, Imache MR, Polyte J, Gaudin A, Mercey M, Donati F, et al. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice. J Biol Chem. 2017;292:12860–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Itou M, Kawaguchi T, Taniguchi E, Sumie S, Oriishi T, Mitsuyama K, et al. Altered expression of glucagon-like peptide-1 and dipeptidyl peptidase IV in patients with HCV-related glucose intolerance. J Gastroenterol Hepatol. 2008;23:244–51.

    Article  CAS  PubMed  Google Scholar 

  52. Yamaguchi A, Tazuma S, Nishioka T, Ohishi W, Hyogo H, Nomura S, et al. Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. Dig Dis Sci. 2005;50:1361–71.

    Article  CAS  PubMed  Google Scholar 

  53. Singaravelu R, Chen R, Lyn RK, Jones DM, O’Hara S, Rouleau Y, et al. Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis. Hepatology. 2014;59:98–108.

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, et al. Liver X receptor alpha-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab Invest. 2012;92:1191–202.

    Article  CAS  PubMed  Google Scholar 

  55. Sun HY, Lin CC, Lee JC, Wang SW, Cheng PN, Wu IC, et al. Very low-density lipoprotein/lipo-viro particles reverse lipoprotein lipase-mediated inhibition of hepatitis C virus infection via apolipoprotein C-III. Gut. 2013;62:1193–203.

    Article  CAS  PubMed  Google Scholar 

  56. Kawaguchi T, Ide T, Taniguchi E, Hirano E, Itou M, Sumie S, et al. Clearance of HCV improves insulin resistance, beta-cell function, and hepatic expression of insulin receptor substrate 1 and 2. Am J Gastroenterol. 2007;102:570–6.

    Article  PubMed  Google Scholar 

  57. Adinolfi LE, Nevola R, Guerrera B, D’Alterio G, Marrone A, Giordano M, et al. HCV clearance by direct-acting antiviral treatments reverses insulin resistance in chronic hepatitis C patients. J Gastroenterol Hepatol. 2018;33(7):1379–82.

    Article  CAS  PubMed  Google Scholar 

  58. Ciancio A, Bosio R, Bo S, Pellegrini M, Sacco M, Vogliotti E, et al. Significant improvement of glycemic control in diabetic patients with HCV infection responding to direct-acting antiviral agents. J Med Virol. 2018;90:320–7.

    Article  CAS  PubMed  Google Scholar 

  59. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–46.

    Article  CAS  PubMed  Google Scholar 

  60. Brandt A, Jin CJ, Nolte K, Sellmann C, Engstler AJ, Bergheim I. Short-term intake of a fructose-, fat- and cholesterol-rich diet causes hepatic steatosis in mice: effect of antibiotic treatment. Nutrients. 2017;9:E1013.

    Article  PubMed  CAS  Google Scholar 

  61. Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16:44–54.

    Article  CAS  PubMed  Google Scholar 

  62. Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut. 2009;58:704–20.

    Article  CAS  PubMed  Google Scholar 

  63. Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016;65:1062–79.

    Article  CAS  PubMed  Google Scholar 

  64. Polyzos SA, Kountouras J, Polymerou V, Papadimitriou KG, Zavos C, Katsinelos P. Vaspin, resistin, retinol-binding protein-4, interleukin-1alpha and interleukin-6 in patients with nonalcoholic fatty liver disease. Ann Hepatol. 2016;15:705–14.

    CAS  PubMed  Google Scholar 

  65. Zwolak A, Szuster-Ciesielska A, Daniluk J, Semeniuk J, Kandefer-Szerszen M. Chemerin, retinol binding protein-4, cytokeratin-18 and transgelin-2 presence in sera of patients with non-alcoholic liver fatty disease. Ann Hepatol. 2016;15:862–9.

    CAS  PubMed  Google Scholar 

  66. Aktas B, Yilmaz Y, Eren F, Yonal O, Kurt R, Alahdab YO, et al. Serum levels of vaspin, obestatin, and apelin-36 in patients with nonalcoholic fatty liver disease. Metabolism. 2011;60:544–9.

    Article  CAS  PubMed  Google Scholar 

  67. Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 2010;12:483–95.

    Article  CAS  PubMed  Google Scholar 

  68. von Loeffelholz C, Horn P, Birkenfeld AL, Claus RA, Metzing BU, Docke S, et al. Fetuin A is a predictor of liver fat in preoperative patients with nonalcoholic fatty liver disease. J Invest Surg. 2016;29:266–74.

    Article  Google Scholar 

  69. Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol. 2017;13:509–20.

    Article  CAS  PubMed  Google Scholar 

  70. Ebert T, Linder N, Schaudinn A, Busse H, Berger J, Lichtinghagen R, et al. Association of fetuin B with markers of liver fibrosis in nonalcoholic fatty liver disease. Endocrine. 2017;58:246–52.

    Article  CAS  PubMed  Google Scholar 

  71. Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: the risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017;66:2055–65.

    Article  CAS  PubMed  Google Scholar 

  72. Polyzos SA, Kountouras J, Anastasilakis AD, Geladari EV, Mantzoros CS. Irisin in patients with nonalcoholic fatty liver disease. Metabolism. 2014;63:207–17.

    Article  CAS  PubMed  Google Scholar 

  73. Kawaguchi T, Sumida Y, Umemura A, Matsuo K, Takahashi M, Takamura T, et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7:e38322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Palmer ND, Musani SK, Yerges-Armstrong LM, Feitosa MF, Bielak LF, Hernaez R, et al. Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African and Hispanic descent. Hepatology. 2013;58:966–75.

    Article  CAS  PubMed  Google Scholar 

  76. Hernaez R, McLean J, Lazo M, Brancati FL, Hirschhorn JN, Borecki IB, et al. Association between variants in or near PNPLA3, GCKR, and PPP1R3B with ultrasound-defined steatosis based on data from the third National Health and Nutrition Examination Survey. Clin Gastroenterol Hepatol. 2013;11:1183–1190e1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sookoian S, Pirola CJ. Meta-analysis of the influence of TM6SF2 E167K variant on plasma concentration of aminotransferases across different populations and diverse liver phenotypes. Sci Rep. 2016;6:27718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7:e1001324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Trepo E, Romeo S, Zucman-Rossi J, Nahon P. PNPLA3 gene in liver diseases. J Hepatol. 2016;65:399–412.

    Article  CAS  PubMed  Google Scholar 

  80. Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet. 2014;23:4077–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem. 2010;285:6706–15.

    Article  CAS  PubMed  Google Scholar 

  82. Huang Y, Cohen JC, Hobbs HH. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J Biol Chem. 2011;286:37085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nordt TK, Schneider DJ, Sobel BE. Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease. Circulation. 1994;89:321–30.

    Article  CAS  PubMed  Google Scholar 

  84. Haffner SM, Howard G, Mayer E, Bergman RN, Savage PJ, Rewers M, et al. Insulin sensitivity and acute insulin response in African-Americans, non-Hispanic whites, and Hispanics with NIDDM: the insulin resistance atherosclerosis study. Diabetes. 1997;46:63–9.

    Article  CAS  PubMed  Google Scholar 

  85. Eslam M, Kawaguchi T, Del Campo JA, Sata M, Khattab MA, Romero-Gomez M. Use of HOMA-IR in hepatitis C. J Viral Hepat. 2011;18:675–84.

    Article  CAS  PubMed  Google Scholar 

  86. Farrell G. Insulin resistance, obesity, and liver cancer. Clin Gastroenterol Hepatol. 2014;12:117–9.

    Article  PubMed  Google Scholar 

  87. Liu TL, Trogdon J, Weinberger M, Fried B, Barritt AS. Diabetes is associated with clinical decompensation events in patients with cirrhosis. Dig Dis Sci. 2016;61:3335–45.

    Article  PubMed  Google Scholar 

  88. Yang JD, Mohamed HA, Cvinar JL, Gores GJ, Roberts LR, Kim WR. Diabetes mellitus heightens the risk of hepatocellular carcinoma except in patients with hepatitis C cirrhosis. Am J Gastroenterol. 2016;111:1573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wild SH, Morling JR, McAllister DA, Kerssens J, Fischbacher C, Parkes J, et al. Type 2 diabetes and risk of hospital admission or death for chronic liver diseases. J Hepatol. 2016;64:1358–64.

    Article  PubMed  Google Scholar 

  90. Su YW, Liu PH, Hsu CY, Lee YH, Hsia CY, Ho SY, et al. Prognostic impact of diabetes mellitus on hepatocellular carcinoma: special emphasis from the BCLC perspective. PLoS One. 2017;12:e0174333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jepsen P, Watson H, Andersen PK, Vilstrup H. Diabetes as a risk factor for hepatic encephalopathy in cirrhosis patients. J Hepatol. 2015;63:1133–8.

    Article  PubMed  Google Scholar 

  92. Fracanzani AL, Valenti L, Bugianesi E, Andreoletti M, Colli A, Vanni E, et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: a role for insulin resistance and diabetes. Hepatology. 2008;48:792–8.

    Article  CAS  PubMed  Google Scholar 

  93. Patel S, Jinjuvadia R, Patel R, Liangpunsakul S. Insulin resistance is associated with significant liver fibrosis in chronic hepatitis C patients: a systemic review and meta-analysis. J Clin Gastroenterol. 2016;50:80–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang CH, Chiu YC, Chen CH, Chen CH, Tsai MC, Chuah SK, et al. Diabetes mellitus is associated with gastroesophageal variceal bleeding in cirrhotic patients. Kaohsiung J Med Sci. 2014;30:515–20.

    Article  PubMed  Google Scholar 

  95. Li Q, Li X, Deng CL. Induction of proliferation and activation of rat hepatic stellate cells via high glucose and high insulin. Eur Rev Med Pharmacol Sci. 2017;21:5420–9.

    CAS  PubMed  Google Scholar 

  96. Ota T, Takamura T, Kurita S, Matsuzawa N, Kita Y, Uno M, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 2007;132:282–93.

    Article  CAS  PubMed  Google Scholar 

  97. Kaji K, Yoshiji H, Kitade M, Ikenaka Y, Noguchi R, Yoshii J, et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med. 2008;22:801–8.

    CAS  PubMed  Google Scholar 

  98. Paradis V, Perlemuter G, Bonvoust F, Dargere D, Parfait B, Vidaud M, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology. 2001;34:738–44.

    Article  CAS  PubMed  Google Scholar 

  99. Cai CX, Buddha H, Castelino-Prabhu S, Zhang Z, Britton RS, Bacon BR, et al. Activation of insulin-PI3K/Akt-p70S6K pathway in hepatic stellate cells contributes to fibrosis in nonalcoholic steatohepatitis. Dig Dis Sci. 2017;62:968–78.

    Article  CAS  PubMed  Google Scholar 

  100. Leti F, Legendre C, Still CD, Chu X, Petrick A, Gerhard GS, et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl Res. 2017;190:25–39 e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu F, Lu Z, Cai J, Huang K, Chen B, Li G, et al. MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle. 2015;14:3885–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dongiovanni P, Meroni M, Baselli GA, Bassani GA, Rametta R, Pietrelli A, et al. Insulin resistance promotes Lysyl Oxidase Like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease. Clin Sci (Lond). 2017;131:1301–15.

    Article  CAS  Google Scholar 

  103. Moon HJ, Finney J, Ronnebaum T, Mure M. Human lysyl oxidase-like 2. Bioorg Chem. 2014;57:231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ampuero J, Ranchal I, del Mar Diaz-Herrero M, del Campo JA, Bautista JD, Romero-Gomez M. Role of diabetes mellitus on hepatic encephalopathy. Metab Brain Dis. 2013;28:277–9.

    Article  CAS  PubMed  Google Scholar 

  105. Bajaj JS, Betrapally NS, Hylemon PB, Thacker LR, Daita K, Kang DJ, et al. Gut microbiota alterations can predict hospitalizations in cirrhosis independent of diabetes mellitus. Sci Rep. 2015;5:18559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wlazlo N, van Greevenbroek MM, Curvers J, Schoon EJ, Friederich P, Twisk JW, et al. Diabetes mellitus at the time of diagnosis of cirrhosis is associated with higher incidence of spontaneous bacterial peritonitis, but not with increased mortality. Clin Sci (Lond). 2013;125:341–8.

    Article  CAS  Google Scholar 

  107. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.

    Article  PubMed  Google Scholar 

  108. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing. 2010;39:412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Iwasa M, Hara N, Terasaka E, Hattori A, Ishidome M, Mifuji-Moroka R, et al. Evaluation and prognosis of sarcopenia using impedance analysis in patients with liver cirrhosis. Hepatol Res. 2014;44:E316–7.

    Article  PubMed  Google Scholar 

  110. Hanai T, Shiraki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A, et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition. 2015;31:193–9.

    Article  PubMed  Google Scholar 

  111. Fujiwara N, Nakagawa H, Kudo Y, Tateishi R, Taguri M, Watadani T, et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol. 2015;63:131–40.

    Article  CAS  PubMed  Google Scholar 

  112. Imai K, Takai K, Watanabe S, Hanai T, Suetsugu A, Shiraki M, et al. Sarcopenia impairs prognosis of patients with hepatocellular carcinoma: the role of liver functional reserve and tumor-related factors in loss of skeletal muscle volume. Nutrients. 2017;9:E1054.

    Article  PubMed  CAS  Google Scholar 

  113. Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One. 2017;12:e0186990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Nishikawa H, Shiraki M, Hiramatsu A, Moriya K, Hino K, Nishiguchi S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol Res. 2016;46:951–63.

    Article  PubMed  Google Scholar 

  115. Fukuda T, Bouchi R, Takeuchi T, Nakano Y, Murakami M, Minami I, et al. Association of diabetic retinopathy with both sarcopenia and muscle quality in patients with type 2 diabetes: a cross-sectional study. BMJ Open Diabetes Res Care. 2017;5:e000404.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Benjamin J, Shasthry V, Kaal CR, Anand L, Bhardwaj A, Pandit V, et al. Characterization of body composition and definition of sarcopenia in patients with alcoholic cirrhosis: a computed tomography based study. Liver Int. 2017;37:1668–74.

    Article  PubMed  Google Scholar 

  117. Hashimoto Y, Osaka T, Fukuda T, Tanaka M, Yamazaki M, Fukui M. The relationship between hepatic steatosis and skeletal muscle mass index in men with type 2 diabetes. Endocr J. 2016;63:877–84.

    Article  CAS  PubMed  Google Scholar 

  118. Abad IR. Descriptive study of cancer of the cavum, particularly epidermoid carcinoma (1). Acta Otorrinolaringol Esp. 1989;40:81–99.

    Google Scholar 

  119. Hassan MM, Hwang LY, Hatten CJ, Swaim M, Li D, Abbruzzese JL, et al. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology. 2002;36:1206–13.

    Article  CAS  PubMed  Google Scholar 

  120. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut. 2005;54:533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dyal HK, Aguilar M, Bartos G, Holt EW, Bhuket T, Liu B, et al. Diabetes mellitus increases risk of hepatocellular carcinoma in chronic hepatitis C virus patients: a systematic review. Dig Dis Sci. 2016;61:636–45.

    Article  CAS  PubMed  Google Scholar 

  122. Reeves HL, Zaki MY, Day CP. Hepatocellular carcinoma in obesity, type 2 diabetes, and NAFLD. Dig Dis Sci. 2016;61:1234–45.

    Article  CAS  PubMed  Google Scholar 

  123. Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease. Ann Transl Med. 2017;5:270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Simon TG, King LY, Chong DQ, Nguyen L, Ma Y, VoPham T, et al. Diabetes, metabolic comorbidities and risk of hepatocellular carcinoma: results from two prospective cohort studies. Hepatology. 2018;67(5):1797–806.

    Article  CAS  PubMed  Google Scholar 

  125. Huang YW, Wang TC, Yang SS, Lin SY, Fu SC, Hu JT, et al. Increased risk of hepatocellular carcinoma in chronic hepatitis C patients with new onset diabetes: a nation-wide cohort study. Aliment Pharmacol Ther. 2015;42:902–11.

    Article  PubMed  Google Scholar 

  126. Kawaguchi T, Izumi N, Charlton MR, Sata M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology. 2011;54:1063–70.

    Article  CAS  PubMed  Google Scholar 

  127. Sandow J. Growth effects of insulin and insulin analogues. Arch Physiol Biochem. 2009;115:72–85.

    Article  CAS  PubMed  Google Scholar 

  128. Saito K, Inoue S, Saito T, Kiso S, Ito N, Tamura S, et al. Augmentation effect of postprandial hyperinsulinaemia on growth of human hepatocellular carcinoma. Gut. 2002;51:100–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Barker BE, Fanger H, Farnes P. Human mammary slices in organ culture. I. Method of culture and preliminary observations on the effect of insulin. Exp Cell Res. 1964;35:437–48.

    Article  CAS  PubMed  Google Scholar 

  130. Formisano P, Oriente F, Fiory F, Caruso M, Miele C, Maitan MA, et al. Insulin-activated protein kinase Cbeta bypasses Ras and stimulates mitogen-activated protein kinase activity and cell proliferation in muscle cells. Mol Cell Biol. 2000;20:6323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sandhu MS, Dunger DB, Giovannucci EL. Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer. J Natl Cancer Inst. 2002;94:972–80.

    Article  CAS  PubMed  Google Scholar 

  132. Le Roith D. Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med. 1997;336:633–40.

    Article  PubMed  Google Scholar 

  133. Scharf JG, Dombrowski F, Ramadori G. The IGF axis and hepatocarcinogenesis. Mol Pathol. 2001;54:138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Alexia C, Fallot G, Lasfer M, Schweizer-Groyer G, Groyer A. An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol. 2004;68:1003–15.

    Article  CAS  PubMed  Google Scholar 

  135. Hung CH, Wang JH, Hu TH, Chen CH, Chang KC, Yen YH, et al. Insulin resistance is associated with hepatocellular carcinoma in chronic hepatitis C infection. World J Gastroenterol. 2010;16:2265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kuriyama S, Miwa Y, Fukushima H, Nakamura H, Toda K, Shiraki M, et al. Prevalence of diabetes and incidence of angiopathy in patients with chronic viral liver disease. J Clin Biochem Nutr. 2007;40:116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fujiwara F, Ishii M, Taneichi H, Miura M, Toshihiro M, Takebe N, et al. Low incidence of vascular complications in patients with diabetes mellitus associated with liver cirrhosis as compared with type 2 diabetes mellitus. Tohoku J Exp Med. 2005;205:327–34.

    Article  PubMed  Google Scholar 

  138. Miyajima I, Kawaguchi T, Fukami A, Nagao Y, Adachi H, Sasaki S, et al. Chronic HCV infection was associated with severe insulin resistance and mild atherosclerosis: a population-based study in an HCV hyperendemic area. J Gastroenterol. 2013;48:93–100.

    Article  PubMed  Google Scholar 

  139. Zuwala-Jagiello J, Pazgan-Simon M, Murawska-Cialowicz E, Simon K. Influence of diabetes on circulating apoptotic microparticles in patients with chronic hepatitis C. In Vivo. 2017;31:1027–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Leone S, Prosperi M, Costarelli S, Nasta P, Maggiolo F, Di Giambenedetto S, et al. Incidence and predictors of cardiovascular disease, chronic kidney disease, and diabetes in HIV/HCV-coinfected patients who achieved sustained virological response. Eur J Clin Microbiol Infect Dis. 2016;35:1511–20.

    Article  CAS  PubMed  Google Scholar 

  141. Zhou YY, Zhou XD, Wu SJ, Hu XQ, Tang B, Poucke SV, et al. Synergistic increase in cardiovascular risk in diabetes mellitus with nonalcoholic fatty liver disease: a meta-analysis. Eur J Gastroenterol Hepatol. 2018;30(6):631–6.

    PubMed  Google Scholar 

  142. Liccardo D, Mosca A, Petroni S, Valente P, Giordano U, Mico AG, et al. The association between retinal microvascular changes, metabolic risk factors, and liver histology in pediatric patients with non-alcoholic fatty liver disease (NAFLD). J Gastroenterol. 2015;50:903–12.

    Article  CAS  PubMed  Google Scholar 

  143. Targher G, Lonardo A, Byrne CD. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 2018;14:99–114.

    Article  CAS  PubMed  Google Scholar 

  144. Mantovani A, Zaza G, Byrne CD, Lonardo A, Zoppini G, Bonora E, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: a systematic review and meta-analysis. Metabolism. 2018;79:64–76.

    Article  CAS  PubMed  Google Scholar 

  145. Guo K, Zhang L, Lu J, Yu H, Wu M, Bao Y, et al. Non-alcoholic fatty liver disease is associated with late but not early atherosclerotic lesions in Chinese inpatients with type 2 diabetes. J Diabetes Complications. 2017;31:80–5.

    Article  PubMed  Google Scholar 

  146. Dallio M, Masarone M, Caprio GG, Di Sarno R, Tuccillo C, Sasso FC, et al. Endocan serum levels in patients with non-alcoholic fatty liver disease with or without type 2 diabetes mellitus: a pilot study. J Gastrointestin Liver Dis. 2017;26:261–8.

    PubMed  Google Scholar 

  147. Goh GB, Pan A, Chow WC, Yuan JM, Koh WP. Association between diabetes mellitus and cirrhosis mortality: the Singapore Chinese Health Study. Liver Int. 2017;37:251–8.

    Article  PubMed  Google Scholar 

  148. Wang YG, Wang P, Wang B, Fu ZJ, Zhao WJ, Yan SL. Diabetes mellitus and poorer prognosis in hepatocellular carcinoma: a systematic review and meta-analysis. PLoS One. 2014;9:e95485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, Das D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60:110–7.

    Article  PubMed  Google Scholar 

  150. Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013;10:656–65.

    Article  CAS  PubMed  Google Scholar 

  151. Huang TS, Lin CL, Lu MJ, Yeh CT, Liang KH, Sun CC, et al. Diabetes, hepatocellular carcinoma, and mortality in hepatitis C-infected patients: a population-based cohort study. J Gastroenterol Hepatol. 2017;32:1355–62.

    Article  CAS  PubMed  Google Scholar 

  152. Younossi ZM, Stepanova M, Saab S, Kalwaney S, Clement S, Henry L, et al. The impact of type 2 diabetes and obesity on the long-term outcomes of more than 85 000 liver transplant recipients in the US. Aliment Pharmacol Ther. 2014;40:686–94.

    Article  CAS  PubMed  Google Scholar 

  153. Suzuki K, Endo R, Kohgo Y, Ohtake T, Ueno Y, Kato A, et al. Guidelines on nutritional management in Japanese patients with liver cirrhosis from the perspective of preventing hepatocellular carcinoma. Hepatol Res. 2012;42:621–6.

    Article  CAS  PubMed  Google Scholar 

  154. Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol. 2017;66:142–52.

    Article  PubMed  Google Scholar 

  155. Kawaguchi T, Yamagishi S, Sata M. Branched-chain amino acids and pigment epithelium-derived factor: novel therapeutic agents for hepatitis c virus-associated insulin resistance. Curr Med Chem. 2009;16:4843–57.

    Article  CAS  PubMed  Google Scholar 

  156. Sakata M, Kawahara A, Kawaguchi T, Akiba J, Taira T, Taniguchi E, et al. Decreased expression of insulin and increased expression of pancreatic transcription factor PDX-1 in islets in patients with liver cirrhosis: a comparative investigation using human autopsy specimens. J Gastroenterol. 2013;48:277–85.

    Article  CAS  PubMed  Google Scholar 

  157. Kawaguchi T, Taniguchi E, Morita Y, Shirachi M, Tateishi I, Nagata E, et al. Association of exogenous insulin or sulphonylurea treatment with an increased incidence of hepatoma in patients with hepatitis C virus infection. Liver Int. 2010;30:479–86.

    Article  CAS  PubMed  Google Scholar 

  158. Kawaguchi T, Kohjima M, Ichikawa T, Seike M, Ide Y, Mizuta T, et al. The morbidity and associated risk factors of cancer in chronic liver disease patients with diabetes mellitus: a multicenter field survey. J Gastroenterol. 2015;50:333–41.

    Article  PubMed  Google Scholar 

  159. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108:881–91.. quiz 892

    Article  CAS  PubMed  Google Scholar 

  160. Hassan MM, Curley SA, Li D, Kaseb A, Davila M, Abdalla EK, et al. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer. 2010;116:1938–46.

    Article  PubMed  Google Scholar 

  161. Chan KM, Kuo CF, Hsu JT, Chiou MJ, Wang YC, Wu TH, et al. Metformin confers risk reduction for developing hepatocellular carcinoma recurrence after liver resection. Liver Int. 2017;37:434–41.

    Article  CAS  PubMed  Google Scholar 

  162. Huang MY, Chung CH, Chang WK, Lin CS, Chen KW, Hsieh TY, et al. The role of thiazolidinediones in hepatocellular carcinoma risk reduction: a population-based cohort study in Taiwan. Am J Cancer Res. 2017;7:1606–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Singal AG, El-Serag HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol. 2015;13:2140–51.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Seo YS, Kim YJ, Kim MS, Suh KS, Kim SB, Han CJ, et al. Association of metformin use with cancer-specific mortality in hepatocellular carcinoma after curative resection: a nationwide population-based study. Medicine (Baltimore). 2016;95:e3527.

    Article  CAS  Google Scholar 

  165. Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016;311:E730–40.

    Article  PubMed  Google Scholar 

  166. Hsu HT, Chi CW. Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. J Hepatocell Carcinoma. 2014;1:127–35.

    PubMed  PubMed Central  Google Scholar 

  167. Casadei Gardini A, Faloppi L, De Matteis S, Foschi FG, Silvestris N, Tovoli F, et al. Metformin and insulin impact on clinical outcome in patients with advanced hepatocellular carcinoma receiving sorafenib: validation study and biological rationale. Eur J Cancer. 2017;86:106–14.

    Article  CAS  PubMed  Google Scholar 

  168. Casadei Gardini A, Marisi G, Scarpi E, Scartozzi M, Faloppi L, Silvestris N, et al. Effects of metformin on clinical outcome in diabetic patients with advanced HCC receiving sorafenib. Expert Opin Pharmacother. 2015;16:2719–25.

    Article  CAS  PubMed  Google Scholar 

  169. Arase Y, Kawamura Y, Seko Y, Kobayashi M, Suzuki F, Suzuki Y, et al. Efficacy and safety in sitagliptin therapy for diabetes complicated by non-alcoholic fatty liver disease. Hepatol Res. 2013;43:1163–8.

    Article  CAS  PubMed  Google Scholar 

  170. Fukuhara T, Hyogo H, Ochi H, Fujino H, Kan H, Naeshiro N, et al. Efficacy and safety of sitagliptin for the treatment of nonalcoholic fatty liver disease with type 2 diabetes mellitus. Hepatogastroenterology. 2014;61:323–8.

    CAS  PubMed  Google Scholar 

  171. Asakawa M, Mitsui H, Akihisa M, Sekine T, Niitsu Y, Kobayashi A, et al. Efficacy and safety of sitagliptin for the treatment of diabetes mellitus complicated by chronic liver injury. Springerplus. 2015;4:346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Mashitani T, Noguchi R, Okura Y, Namisaki T, Mitoro A, Ishii H, et al. Efficacy of alogliptin in preventing non-alcoholic fatty liver disease progression in patients with type 2 diabetes. Biomed Rep. 2016;4:183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Okura Y, Namisaki T, Moriya K, Kitade M, Takeda K, Kaji K, et al. Combined treatment with dipeptidyl peptidase-4 inhibitor (sitagliptin) and angiotensin-II type 1 receptor blocker (losartan) suppresses progression in a non-diabetic rat model of steatohepatitis. Hepatol Res. 2017;47:1317–28.

    Article  CAS  PubMed  Google Scholar 

  174. Itou M, Kawaguchi T, Taniguchi E, Sata M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol. 2013;19:2298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jojima T, Tomotsune T, Iijima T, Akimoto K, Suzuki K, Aso Y. Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes. Diabetol Metab Syndr. 2016;8:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Klein T, Fujii M, Sandel J, Shibazaki Y, Wakamatsu K, Mark M, et al. Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis. Med Mol Morphol. 2014;47:137–49.

    Article  CAS  PubMed  Google Scholar 

  177. Jung YA, Choi YK, Jung GS, Seo HY, Kim HS, Jang BK, et al. Sitagliptin attenuates methionine/choline-deficient diet-induced steatohepatitis. Diabetes Res Clin Pract. 2014;105:47–57.

    Article  CAS  PubMed  Google Scholar 

  178. Hwang HJ, Jung TW, Kim BH, Hong HC, Seo JA, Kim SG, et al. A dipeptidyl peptidase-IV inhibitor improves hepatic steatosis and insulin resistance by AMPK-dependent and JNK-dependent inhibition of LECT2 expression. Biochem Pharmacol. 2015;98:157–66.

    Article  CAS  PubMed  Google Scholar 

  179. Ideta T, Shirakami Y, Miyazaki T, Kochi T, Sakai H, Moriwaki H, et al. The dipeptidyl peptidase-4 inhibitor teneligliptin attenuates hepatic lipogenesis via AMPK activation in non-alcoholic fatty liver disease model mice. Int J Mol Sci. 2015;16:29207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang H, Liu X, Long M, Huang Y, Zhang L, Zhang R, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med. 2016;8:334–51.

    Google Scholar 

  181. Harada M, Yoneda A, Haruyama S, Yabuki K, Honma Y, Hiura M, et al. Bullous pemphigoid associated with the dipeptidyl peptidase-4 inhibitor sitagliptin in a patient with liver cirrhosis complicated with rapidly progressive hepatocellular carcinoma. Intern Med. 2017;56:2471–4.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical approach to initiating SGLT2 inhibitors in type 2 diabetes. Diabetes Ther. 2017;8:953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60:215–25.

    Article  CAS  PubMed  Google Scholar 

  184. Tanaka A, Node K. Emerging roles of sodium-glucose cotransporter 2 inhibitors in cardiology. J Cardiol. 2017;69:501–7.

    Article  PubMed  Google Scholar 

  185. Hayashizaki-Someya Y, Kurosaki E, Takasu T, Mitori H, Yamazaki S, Koide K, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;754:19–24.

    Article  CAS  PubMed  Google Scholar 

  186. Nakano S, Katsuno K, Isaji M, Nagasawa T, Buehrer B, Walker S, et al. Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice. J Clin Exp Hepatol. 2015;5:190–8.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Qiang S, Nakatsu Y, Seno Y, Fujishiro M, Sakoda H, Kushiyama A, et al. Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr. 2015;7:104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Takeda A, Irahara A, Nakano A, Takata E, Koketsu Y, Kimata K, et al. The improvement of the hepatic histological findings in a patient with non-alcoholic steatohepatitis with type 2 diabetes after the administration of the sodium-glucose cotransporter 2 inhibitor ipragliflozin. Intern Med. 2017;56:2739–44.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Tobita H, Sato S, Miyake T, Ishihara S, Kinoshita Y. Effects of dapagliflozin on body composition and liver tests in patients with nonalcoholic steatohepatitis associated with type 2 diabetes mellitus: a prospective, open-label, uncontrolled study. Curr Ther Res Clin Exp. 2017;87:13–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ito D, Shimizu S, Inoue K, Saito D, Yanagisawa M, Inukai K, et al. Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: a randomized, 24-week, open-label, active-controlled trial. Diabetes Care. 2017;40:1364–72.

    Article  CAS  PubMed  Google Scholar 

  191. Shibuya T, Fushimi N, Kawai M, Yoshida Y, Hachiya H, Ito S, et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: a prospective randomized controlled pilot study. Diabetes Obes Metab. 2018;20:438–42.

    Article  CAS  PubMed  Google Scholar 

  192. Komiya C, Tsuchiya K, Shiba K, Miyachi Y, Furuke S, Shimazu N, et al. Ipragliflozin improves hepatic steatosis in obese mice and liver dysfunction in type 2 diabetic patients irrespective of body weight reduction. PLoS One. 2016;11:e0151511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Honda Y, Imajo K, Kato T, Kessoku T, Ogawa Y, Tomeno W, et al. The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS One. 2016;11:e0146337.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53(3):362–76.

    Article  CAS  PubMed  Google Scholar 

  195. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A. 2015;112:E4111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Saito T, Okada S, Yamada E, Shimoda Y, Osaki A, Tagaya Y, et al. Effect of dapagliflozin on colon cancer cell [Rapid Communication]. Endocr J. 2015;62:1133–7.

    Article  CAS  PubMed  Google Scholar 

  197. Okada J, Matsumoto S, Kaira K, Saito T, Yamada E, Yokoo H, et al. Sodium glucose cotransporter 2 inhibition combined with cetuximab significantly reduced tumor size and carcinoembryonic antigen level in colon cancer metastatic to liver. Clin Colorectal Cancer. 2018;17(1):e45–8.

    Article  PubMed  Google Scholar 

  198. Obara K, Shirakami Y, Maruta A, Ideta T, Miyazaki T, Kochi T, et al. Preventive effects of the sodium glucose cotransporter 2 inhibitor tofogliflozin on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic mice. Oncotarget. 2017;8:58353–63.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J Cancer. 2017;142(8):1712–22.

    Article  PubMed  CAS  Google Scholar 

  200. Tang H, Dai Q, Shi W, Zhai S, Song Y, Han J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia. 2017;60:1862–72.

    Article  CAS  PubMed  Google Scholar 

  201. Donadon V, Balbi M, Casarin P, Vario A, Alberti A. Association between hepatocellular carcinoma and type 2 diabetes mellitus in Italy: potential role of insulin. World J Gastroenterol. 2008;14:5695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Donadon V, Balbi M, Ghersetti M, Grazioli S, Perciaccante A, Della Valentina G, et al. Antidiabetic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. World J Gastroenterol. 2009;15:2506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bosetti C, Franchi M, Nicotra F, Asciutto R, Merlino L, La Vecchia C, et al. Insulin and other antidiabetic drugs and hepatocellular carcinoma risk: a nested case-control study based on Italian healthcare utilization databases. Pharmacoepidemiol Drug Saf. 2015;24:771–8.

    Article  CAS  PubMed  Google Scholar 

  204. Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer. 2011;11:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang H, Gao C, Fang L, Zhao HC, Yao SK. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: a meta-analysis. Scand J Gastroenterol. 2013;48:78–87.

    Article  CAS  PubMed  Google Scholar 

  206. Zhang ZJ, Zheng ZJ, Shi R, Su Q, Jiang Q, Kip KE. Metformin for liver cancer prevention in patients with type 2 diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97:2347–53.

    Article  CAS  PubMed  Google Scholar 

  207. Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol. 2011;26:858–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest Statement

All authors disclose no conflicts.

Financial Support

This work was supported by JSPS Grant-in-Aid for Scientific Research (C) JP17K09444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takumi Kawaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawaguchi, T., Nakano, D., Torimura, T. (2019). Diabetes in Liver Disease. In: Yoshiji, H., Kaji, K. (eds) Alcoholic/Non-Alcoholic Digestive Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-1465-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1465-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1464-3

  • Online ISBN: 978-981-13-1465-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics