Skip to main content
Book cover

Myopathology pp 103–130Cite as

Muscular Dystrophies

  • Chapter
  • First Online:
  • 1044 Accesses

Abstract

The term dystrophy is derived from the Greek word “dus” meaning “bad” and “trophia” meaning “nourishment” as it was initially thought of muscle disease due to disordered nutritional factors. Muscular dystrophies are a group of heterogeneous genetic disorders that have in common irreversible loss of muscle fibers resulting from repetitive cycles of degeneration, necrosis, regeneration, and eventually fibrosis and fat replacement [1]. The worldwide prevalence of muscular dystrophies is 16.14 per 100,000 [2]. The most common muscular dystrophy is the Duchenne muscular dystrophy (DMD), first described by Edward Meryon in 1851 at the Royal Medical and Chirurgical Society meeting. The same was published a year later [3, 4]. In the ensuing years 1861 and 1868, Guillaume-Benjamin-Amand Duchenne described the same disease in greater detail [5]. The term “muscular dystrophy”, however, was first coined by Erb in 1891 [6]. Over the years, scientists gradually realized that muscular dystrophies were inherited and most had a characteristic pattern of muscle involvement. The myopathological features common to most muscular dystrophies are variation in muscle fiber size and shape, myonecrosis, myophagocytosis and eventually replacement of myoarchitecture by fibroadipose connective tissue. The first clinical classification for muscular dystrophies was proposed by Walton and Nattrass based on the pattern of muscle involvement [7]. The clinical classification although simple has many limitations because of considerable overlap between the subgroups and at times between nondystrophic myopathies. For example, limb-girdle muscular dystrophy 2A (LGMD2A) can clinically mimic facioscapulohumeral muscular dystrophy (FSHD). Dysferlinopathy (LGMD2B), LGMD2A, and FSHD are common mimics of inflammatory myopathy [8]. Histopathological features in such cases may at times provide a clue to the subtype of muscular dystrophy under question. FSHD and LGMD2B may have endomysial mononuclear infiltrate as the dominant finding. In oculopharyngeal muscular dystrophy (OPMD), rimmed vacuoles and nuclear tubulofilamentous inclusions are quite characteristic. Lobulated fibers and eosinophils are commonly encountered in LGMD2A. However, these findings can be a double-edged sword and misleading at times. In LGMD2B, infiltration of the endomysium by mononuclear cells associated with MHC-I upregulation and elevated serum CK levels may mimic inflammatory myopathy. Lobulated fibers are known to occur in a variety of conditions such as normal myotendinous junctions, LGMD2A, α-sarcoglycanopathy, dysferlinopathy, carriers of dystrophin gene mutation, Bethlem myopathy, LGMD2G, scapuloperoneal muscular dystrophy, nemaline myopathy, etc. [9–15]. Similarly, rimmed inclusions can be observed in Becker muscular dystrophy, Miyoshi myopathy, LGMD2I, LGMD2G, FSHD, titinopathy, oculopharyngeal muscular dystrophy, scapuloperoneal muscular dystrophy, congenital muscular dystrophy with merosin deficiency, GNE myopathy, etc. [9, 11, 16–23]. One of the most significant breakthroughs in the history of myopathology is the discovery of DMD gene locus by Monaco et al. [24]. Thereafter, the amassing wealth of molecular genetic data with respect to the muscle diseases has been phenomenal. Recent classifications have focused on the molecular genetic mechanisms that underlie muscular dystrophies especially the genes encoding proteins directly or indirectly associated with muscle contraction and repair. The data is likely to increase exponentially as new state-of-the-art techniques evolve in the future. In this chapter, we will follow the molecular pathology-based classification with emphasis on clinical and myopathological features. Although there is an interplay of other factors, this classification is being adopted because of its lucidity. The onset of dystrophies may be at birth or may be delayed until late adulthood. The key aspect in the assessment of a suspected muscular dystrophy is defining the pattern of muscle weakness. Most of the adult muscular dystrophies have a “limb-girdle” pattern of weakness with proximal limb muscles being weaker than distal muscle groups. It is important to look for additional features such as facial weakness, scapular winging, calf hypertrophy/atrophy, asymmetry in strength, and rippling of muscles to narrow down the list of differential diagnosis. Dystrophies affect not only skeletal muscles. Cardiomyopathy may be the presenting feature. The primary reason for demise in most cases of dystrophy can be attributed to respiratory muscle failure. Smooth muscles may also be affected, leading to abnormal gastrointestinal motility. Serum creatine kinase (CK) levels are usually raised (sometimes up to 20 times normal or greater) in most of the dystrophies. However, this is not always true especially in some of the more indolent disorders and in end-stage muscle disease where the muscle does not have enough CK. Levels of other enzymes, including aldolase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), may be elevated as well. Electromyography (EMG) may be helpful in sporadic cases and in patients with normal or modest elevation CK levels. Muscle imaging, especially the magnetic resonance imaging (MRI), is helpful to assess selective muscle involvement and to guide biopsy sites. In most patients with muscular dystrophy, genetic studies are the first line of investigations to circumvent the need for a muscle biopsy. However, muscle biopsy may be indicated under special circumstances such as ambiguous clinical manifestations, non-contributory genetic testing, and unknown prevalence of the suspected dystrophy. Diagnostic accuracy increases when light microscopic morphology is complemented by ancillary techniques. Development of diagnostic antibodies against proteins implicated in dystrophy permits us in drafting appropriate protocols to guide genetic testing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wicklund MP. The muscular dystrophies. Continuum (Minneap Minn). 2013;19:1535–70.

    Google Scholar 

  2. Mah JK, Korngut L, Fiest KM, et al. A systematic review and meta-analysis on the epidemiology of the muscular dystrophies. Can J Neurol Sci. 2016;43:163–77.

    Article  PubMed  Google Scholar 

  3. Emery ML, Emery AE. Edward Meryon (1807–1880): his life and Huguenot background. J Med Biogr. 1998;6:1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Meryon E. On granular and fatty degeneration of the voluntary muscles. Med Chir Trans. 1852;35(1):73–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Emery AE. Duchenne muscular dystrophy—Meryon’s disease. Neuromuscul Disord. 1993;3:263–6.

    Article  CAS  PubMed  Google Scholar 

  6. Dubowitz V. The muscular dystrophies. Postgrad Med J. 1992;68:500–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walton JN. On the classification and natural history of the myopathies. Trans Am Neurol Assoc. 1954;13:19–21.

    CAS  PubMed  Google Scholar 

  8. Mammen AL. Which nonautoimmune myopathies are most frequently misdiagnosed as myositis? Curr Opin Rheumatol. 2017;29:618–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gayathri N, Alefia R, Nalini A, et al. Dysferlinopathy: spectrum of pathological changes in skeletal muscle tissue. Indian J Pathol Microbiol. 2011;54:350–4.

    Article  CAS  PubMed  Google Scholar 

  10. Figarella-Branger D, El-Dassouki M, Saenz A, et al. Myopathy with lobulated muscle fibers: evidence for heterogeneous etiology and clinical presentation. Neuromuscul Disord. 2002;12:4–12.

    Article  CAS  PubMed  Google Scholar 

  11. Liewluck T, Milone M, Mauermann ML, et al. A novel VCP mutation underlies scapuloperoneal muscular dystrophy and dropped head syndrome featuring lobulated fibers. Muscle Nerve. 2014;50:295–9.

    Article  CAS  PubMed  Google Scholar 

  12. Claeys KG, Schrading S, Bozkurt A, et al. Myopathy with lobulated fibers, cores, and rods caused by a mutation in collagen VI. Neurology. 2012;79:2288–90.

    Article  PubMed  Google Scholar 

  13. Paim JF, Cotta A, Vargas AP, et al. Muscle phenotypic variability in limb girdle muscular dystrophy 2 G. J Mol Neurosci. 2013;50:339–44.

    Article  CAS  PubMed  Google Scholar 

  14. Irodenko VS, Lee HS, de Armond SJ, et al. Adult nemaline myopathy with trabecular muscle fibers. Muscle Nerve. 2009;39:871–5.

    Article  PubMed  Google Scholar 

  15. Guerard MJ, Sewry CA, Dubowitz V. Lobulated fibers in neuromuscular diseases. J Neurol Sci. 1985;69:345–56.

    Article  CAS  PubMed  Google Scholar 

  16. Momma K, Noguchi S, Malicdan MC, et al. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies. PLoS One. 2012;7:e52002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajakulendran S, Parton M, Holton JL, et al. Clinical and pathological heterogeneity in late-onset partial merosin deficiency. Muscle Nerve. 2011;44:590–3.

    Article  CAS  PubMed  Google Scholar 

  18. Hong D, Zhang W, Wang W, et al. Asian patients with limb girdle muscular dystrophy 2I (LGMD2I). J Clin Neurosci. 2011;18:494–9.

    Article  PubMed  Google Scholar 

  19. Cotta A, Paim JF, da-Cunha-Junior AL, et al. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern. BMC Clin Pathol. 2014;14:41.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reilich P, Schramm N, Schoser B, et al. Facioscapulohumeral muscular dystrophy presenting with unusual phenotypes and atypical morphological features of vacuolar myopathy. J Neurol. 2010;257:1108–18.

    Article  PubMed  Google Scholar 

  21. De Cid R, Ben Yaou R, Roudaut C, et al. A new titinopathy: childhood-juvenile onset Emery-Dreifuss-like phenotype without cardiomyopathy. Neurology. 2015;85:2126–35.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Garibaldi M, Pennisi EM, Bruttini M, et al. Dropped-head in recessive oculopharyngeal muscular dystrophy. Neuromuscul Disord. 2015;25:869–72.

    Article  PubMed  Google Scholar 

  23. Nishino I, Carrillo-Carrasco N, Argov Z. GNE myopathy: current update and future therapy. J Neurol Neurosurg Psychiatry. 2015;86:385–92.

    Article  PubMed  Google Scholar 

  24. Monaco AP, Bertelson CJ, Middlesworth W, et al. Detection of deletions spanning the Duchenne muscular dystrophy locus using a tightly linked DNA segment. Nature. 1985;316:842–5.

    Article  CAS  PubMed  Google Scholar 

  25. Rybakova IN, Patel JR, Ervasti JM. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol. 2000;150:1209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prins KW, Humston JL, Mehta A, et al. Dystrophin is a microtubule-associated protein. J Cell Biol. 2009;186:363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao QQ, McNally EM. The dystrophin complex: structure, function, and implications for therapy. Compr Physiol. 2015;5:1223–39.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992;355:696–702.

    Article  CAS  PubMed  Google Scholar 

  29. Aplin AE, Howe A, Alahari SK, et al. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev. 1998;50:197–263.

    CAS  PubMed  Google Scholar 

  30. Allikian MJ, McNally EM. Processing and assembly of the dystrophin glycoprotein complex. Traffic. 2007;8:177–83.

    Article  CAS  PubMed  Google Scholar 

  31. Marshall JL, Crosbie-Watson RH. Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle. 2013;3:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McNeil PL, Terasaki M. Coping with the inevitable: how cells repair a torn surface membrane. Nat Cell Biol. 2001;3:E124–9.

    Article  CAS  PubMed  Google Scholar 

  33. Cenacchi G, Fanin M, De Giorgi LB, et al. Ultrastructural changes in dysferlinopathy support defective membrane repair mechanism. J Clin Pathol. 2005;58:190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amato AA, Brown RH Jr. Dysferlinopathies. Handb Clin Neurol. 2011;101:111–8.

    Article  PubMed  Google Scholar 

  35. Brandsema JF, Darras BT. Dystrophinopathies. Semin Neurol. 2015;35:369–84.

    Article  PubMed  Google Scholar 

  36. Mah JK, Korngut L, Dykeman J, et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord. 2014;24:482–91.

    Article  PubMed  Google Scholar 

  37. Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2:731–40.

    Article  CAS  PubMed  Google Scholar 

  38. Rybakova IN, Amann KJ, Ervasti JM. A new model for the interaction of dystrophin with F-actin. J Cell Biol. 1996;135:661–72.

    Article  CAS  PubMed  Google Scholar 

  39. Le Rumeur E. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies. Bosn J Basic Med Sci. 2015;15:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Den Dunnen JT, Grootscholten PM, Bakker E, et al. Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am J Hum Genet. 1989;45:835–47.

    Google Scholar 

  41. Beggs AH, Koenig M, Boyce FM, et al. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum Genet. 1990;86:45–8.

    Article  CAS  PubMed  Google Scholar 

  42. Abbs S, Bobrow M. Analysis of quantitative PCR for the diagnosis of deletion and duplication carriers in the dystrophin gene. J Med Genet. 1992;29:191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yau SC, Bobrow M, Mathew CG, et al. Accurate diagnosis of carriers of deletions and duplications in Duchenne/Becker muscular dystrophy by fluorescent dosage analysis. J Med Genet. 1996;33:550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. White S, Kalf M, Liu Q, et al. Comprehensive detection of genomic duplications and deletions in the DMD gene, by use of multiplex amplifiable probe hybridization. Am J Hum Genet. 2002;71:365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Monaco AP, Bertelson CJ, Liechti-Gallati S, et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2:90–5.

    Article  CAS  PubMed  Google Scholar 

  46. Koenig M, Beggs AH, Moyer M, et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet. 1989;45:498–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Malhotra SB, Hart KA, Klamut HJ, et al. Frame-shift deletions in patients with Duchenne and Becker muscular dystrophy. Science. 1988;242:755–9.

    Article  CAS  PubMed  Google Scholar 

  48. Baumbach LL, Chamberlain JS, Ward PA, et al. Molecular and clinical correlations of deletions leading to Duchenne and Becker muscular dystrophies. Neurology. 1989;39:465–74.

    Article  CAS  PubMed  Google Scholar 

  49. Gillard EF, Chamberlain JS, Murphy EG, et al. Molecular and phenotypic analysis of patients with deletions within the deletion-rich region of the Duchenne muscular dystrophy (DMD) gene. Am J Hum Genet. 1989;45:507–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Muntoni F, Gobbi P, Sewry C, et al. Deletions in the 5′ region of dystrophin and resulting phenotypes. J Med Genet. 1994;31:843–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arahata K, Beggs AH, Honda H, et al. Preservation of the C-terminus of dystrophin molecule in the skeletal muscle from Becker muscular dystrophy. J Neurol Sci. 1991;101:148–56.

    Article  CAS  PubMed  Google Scholar 

  52. Nicholson LV, Bushby KM, Johnson MA, et al. Predicted and observed sizes of dystrophin in some patients with gene deletions that disrupt the open reading frame. J Med Genet. 1992;29:892–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patria SY, Alimsardjono H, Nishio H, et al. A case of Becker muscular dystrophy resulting from the skipping of four contiguous exons (71-74) of the dystrophin gene during mRNA maturation. Proc Assoc Am Physicians. 1996;108:308–14.

    CAS  PubMed  Google Scholar 

  54. Muntoni F. Is a muscle biopsy in Duchenne dystrophy really necessary? Neurology. 2001;57:574–5.

    Article  CAS  PubMed  Google Scholar 

  55. Trabelsi M, Kavian N, Daoud F, et al. Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet. 2008;16:793–803.

    Article  CAS  PubMed  Google Scholar 

  56. Tews DS, Goebel HH. Diagnostic immunohistochemistry in neuromuscular disorders. Histopathology. 2005;46:1–23.

    Article  CAS  PubMed  Google Scholar 

  57. Zimprich A, Grabowski M, Asmus F, et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome. Nat Genet. 2001;29:66–9.

    Article  CAS  PubMed  Google Scholar 

  58. Grabowski M, Zimprich A, Lorenz-Depiereux B, et al. The epsilon-sarcoglycan gene (SGCE), mutated in myoclonus-dystonia syndrome, is maternally imprinted. Eur J Hum Genet. 2003;11:138–44.

    Article  CAS  PubMed  Google Scholar 

  59. Wheeler MT, Zarnegar S, McNally EM. Zeta-sarcoglycan, a novel component of the sarcoglycan complex, is reduced in muscular dystrophy. Hum Mol Genet. 2002;11:2147–54.

    Article  CAS  PubMed  Google Scholar 

  60. Kirschner J, Lochmuller H. Sarcoglycanopathies. Handb Clin Neurol. 2011;101:41–6.

    Article  PubMed  Google Scholar 

  61. Cagliani R, Comi GP, Tancredi L, et al. Primary beta-sarcoglycanopathy manifesting as recurrent exercise-induced myoglobinuria. Neuromuscul Disord. 2001;11:389–94.

    Article  CAS  PubMed  Google Scholar 

  62. Mongini T, Doriguzzi C, Bosone I, et al. Alpha-sarcoglycan deficiency featuring exercise intolerance and myoglobinuria. Neuropediatrics. 2002;33:109–11.

    Article  CAS  PubMed  Google Scholar 

  63. Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve. 2018 Jan 19. https://doi.org/10.1002/mus.26077. [Epub ahead of print].

    Article  Google Scholar 

  64. Baumeister SK, Todorovic S, Milic-Rasic V, et al. Eosinophilic myositis as presenting symptom in gamma-sarcoglycanopathy. Neuromuscul Disord. 2009;19:167–71.

    Article  PubMed  Google Scholar 

  65. Vainzof M, Passos-Bueno MR, Canovas M, et al. The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum Mol Genet. 1996;5:1963–9.

    Article  CAS  PubMed  Google Scholar 

  66. Bashir R, Strachan T, Keers S, et al. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p. Hum Mol Genet. 1994;3:455–7.

    Article  CAS  PubMed  Google Scholar 

  67. Passos-Bueno MR, Bashir R, Moreira ES, et al. Confirmation of the 2p locus for the mild autosomal recessive limb-girdle muscular dystrophy gene (LGMD2B) in three families allows refinement of the candidate region. Genomics. 1995;27:192–5.

    Article  CAS  PubMed  Google Scholar 

  68. Bejaoui K, Hirabayashi K, Hentati F, et al. Linkage of Miyoshi myopathy (distal autosomal recessive muscular dystrophy) locus to chromosome 2p12-14. Neurology. 1995;45:768–72.

    Article  CAS  PubMed  Google Scholar 

  69. Bashir R, Keers S, Strachan T, et al. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p. Genomics. 1996;33:46–52.

    Article  CAS  PubMed  Google Scholar 

  70. Angelini C, Nardetto L, Borsato C, et al. The clinical course of calpainopathy (LGMD2A) and dysferlinopathy (LGMD2B). Neurol Res. 2010;32:41–6.

    Article  CAS  PubMed  Google Scholar 

  71. Fanin M, Angelini C. Progress and challenges in diagnosis of dysferlinopathy. Muscle Nerve. 2016;54:821–35.

    Article  CAS  PubMed  Google Scholar 

  72. Miyoshi K, Kawai H, Iwasa M, et al. Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Seventeen cases in eight families including an autopsied case. Brain. 1986;109(Pt 1):31–54.

    Article  PubMed  Google Scholar 

  73. Nakagawa M, Matsuzaki T, Suehara M, et al. Phenotypic variation in a large Japanese family with Miyoshi myopathy with nonsense mutation in exon 19 of dysferlin gene. J Neurol Sci. 2001;184:15–9.

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki N, Aoki M, Takahashi T, et al. Novel dysferlin mutations and characteristic muscle atrophy in late-onset Miyoshi myopathy. Muscle Nerve. 2004;29:721–3.

    Article  PubMed  Google Scholar 

  75. Diers A, Carl M, Stoltenburg-Didinger G, et al. Painful enlargement of the calf muscles in limb girdle muscular dystrophy type 2B (LGMD2B) with a novel compound heterozygous mutation in DYSF. Neuromuscul Disord. 2007;17:157–62.

    Article  PubMed  Google Scholar 

  76. Nguyen K, Bassez G, Krahn M, et al. Phenotypic study in 40 patients with dysferlin gene mutations: high frequency of atypical phenotypes. Arch Neurol. 2007;64:1176–82.

    Article  PubMed  Google Scholar 

  77. Linssen WH, de Voogt WG, Krahn M, et al. Long-term follow-up study on patients with Miyoshi phenotype of distal muscular dystrophy. Eur J Neurol. 2013;20:968–74.

    Article  CAS  PubMed  Google Scholar 

  78. Nishida Y, Ishimoto S, Kobayashi T, et al. Two sisters with autosomal recessive muscular dystrophy (Miyoshi) with early involvement of limb girdle muscles. Rinsho Shinkeigaku. 1987;27:756–9.

    CAS  PubMed  Google Scholar 

  79. Ueyama H, Kumamoto T, Horinouchi H, et al. Clinical heterogeneity in dysferlinopathy. Intern Med. 2002;41:532–6.

    Article  PubMed  Google Scholar 

  80. Nguyen K, Bassez G, Bernard R, et al. Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Hum Mutat. 2005;26:165.

    Article  PubMed  Google Scholar 

  81. Illa I, Serrano-Munuera C, Gallardo E, et al. Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol. 2001;49:130–4.

    Article  CAS  PubMed  Google Scholar 

  82. Vilchez JJ, Gallano P, Gallardo E, et al. Identification of a novel founder mutation in the DYSF gene causing clinical variability in the Spanish population. Arch Neurol. 2005;62:1256–9.

    Article  PubMed  Google Scholar 

  83. Saito H, Suzuki N, Ishiguro H, et al. Distal anterior compartment myopathy with early ankle contractures. Muscle Nerve. 2007;36:525–7.

    Article  PubMed  Google Scholar 

  84. Xi J, Blandin G, Lu J, et al. Clinical heterogeneity and a high proportion of novel mutations in a Chinese cohort of patients with dysferlinopathy. Neurol India. 2014;62:635–9.

    Article  PubMed  Google Scholar 

  85. Nagashima T, Chuma T, Mano Y, et al. Dysferlinopathy associated with rigid spine syndrome. Neuropathology. 2004;24:341–6.

    Article  PubMed  Google Scholar 

  86. Seror P, Krahn M, Laforet P, et al. Complete fatty degeneration of lumbar erector spinae muscles caused by a primary dysferlinopathy. Muscle Nerve. 2008;37:410–4.

    Article  CAS  PubMed  Google Scholar 

  87. Klinge L, Dean AF, Kress W, et al. Late onset in dysferlinopathy widens the clinical spectrum. Neuromuscul Disord. 2008;18:288–90.

    Article  CAS  PubMed  Google Scholar 

  88. Ceyhan-Birsoy O, Talim B, Swanson LC, et al. Whole exome sequencing reveals DYSF, FKTN, and ISPD mutations in congenital muscular dystrophy without brain or eye involvement. J Neuromuscul Dis. 2015;2:87–92.

    PubMed  PubMed Central  Google Scholar 

  89. Paradas C, Gonzalez-Quereda L, De Luna N, et al. A new phenotype of dysferlinopathy with congenital onset. Neuromuscul Disord. 2009;19:21–5.

    Article  CAS  PubMed  Google Scholar 

  90. Spuler S, Carl M, Zabojszcza J, et al. Dysferlin-deficient muscular dystrophy features amyloidosis. Ann Neurol. 2008;63:323–8.

    Article  CAS  PubMed  Google Scholar 

  91. Grounds MD, Terrill JR, Radley-Crabb HG, et al. Lipid accumulation in dysferlin-deficient muscles. Am J Pathol. 2014;184:1668–76.

    Article  CAS  PubMed  Google Scholar 

  92. Yin X, Wang Q, Chen T, et al. CD4+ cells, macrophages, MHC-I and C5b-9 involve the pathogenesis of dysferlinopathy. Int J Clin Exp Pathol. 2015;8:3069–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Schorling DC, Kirschner J, Bonnemann CG. Congenital muscular dystrophies and myopathies: an overview and update. Neuropediatrics. 2017;48:247–61.

    Article  PubMed  Google Scholar 

  94. Philpot J, Pennock J, Cowan F, et al. Brain magnetic resonance imaging abnormalities in merosin-positive congenital muscular dystrophy. Eur J Paediatr Neurol. 2000;4:109–14.

    Article  CAS  PubMed  Google Scholar 

  95. Philpot J, Cowan F, Pennock J, et al. Merosin-deficient congenital muscular dystrophy: the spectrum of brain involvement on magnetic resonance imaging. Neuromuscul Disord. 1999;9:81–5.

    Article  CAS  PubMed  Google Scholar 

  96. Tubridy N, Fontaine B, Eymard B. Congenital myopathies and congenital muscular dystrophies. Curr Opin Neurol. 2001;14:575–82.

    Article  CAS  PubMed  Google Scholar 

  97. Bertini E, Pepe G. Collagen type VI and related disorders: Bethlem myopathy and Ullrich scleroatonic muscular dystrophy. Eur J Paediatr Neurol. 2002;6:193–8.

    Article  PubMed  Google Scholar 

  98. Scacheri PC, Gillanders EM, Subramony SH, et al. Novel mutations in collagen VI genes: expansion of the Bethlem myopathy phenotype. Neurology. 2002;58:593–602.

    Article  CAS  PubMed  Google Scholar 

  99. Bonnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy. Handb Clin Neurol. 2011;101:81–96.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chae JH, Vasta V, Cho A, et al. Utility of next generation sequencing in genetic diagnosis of early onset neuromuscular disorders. J Med Genet. 2015;52:208–16.

    Article  CAS  PubMed  Google Scholar 

  101. Valle G, Faulkner G, De Antoni A, et al. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett. 1997;415:163–8.

    Article  CAS  PubMed  Google Scholar 

  102. Gregorio CC, Trombitas K, Centner T, et al. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol. 1998;143:1013–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mues A, van der Ven PF, Young P, et al. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett. 1998;428:111–4.

    Article  CAS  PubMed  Google Scholar 

  104. Gregorio CC, Granzier H, Sorimachi H, et al. Muscle assembly: a titanic achievement? Curr Opin Cell Biol. 1999;11:18–25.

    Article  CAS  PubMed  Google Scholar 

  105. Zou P, Gautel M, Geerlof A, et al. Solution scattering suggests cross-linking function of telethonin in the complex with titin. J Biol Chem. 2003;278:2636–44.

    Article  CAS  PubMed  Google Scholar 

  106. Moreira ES, Wiltshire TJ, Faulkner G, et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet. 2000;24:163–6.

    Article  CAS  PubMed  Google Scholar 

  107. Zatz M, Vainzof M, Passos-Bueno MR. Limb-girdle muscular dystrophy: one gene with different phenotypes, one phenotype with different genes. Curr Opin Neurol. 2000;13:511–7.

    Article  CAS  PubMed  Google Scholar 

  108. de Fuenmayor-Fernandez de la Hoz CP, Hernandez-Lain A, Olive M, et al. Novel mutation in TCAP manifesting with asymmetric calves and early-onset joint retractions. Neuromuscul Disord. 2016;26:749–53.

    Article  PubMed  Google Scholar 

  109. Olive M, Shatunov A, Gonzalez L, et al. Transcription-terminating mutation in telethonin causing autosomal recessive muscular dystrophy type 2G in a European patient. Neuromuscul Disord. 2008;18:929–33.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ferreiro A, Mezmezian M, Olive M, et al. Telethonin-deficiency initially presenting as a congenital muscular dystrophy. Neuromuscul Disord. 2011;21:433–8.

    Article  PubMed  Google Scholar 

  111. Ikenberg E, Karin I, Ertl-Wagner B, et al. Rare diagnosis of telethoninopathy (LGMD2G) in a Turkish patient. Neuromuscul Disord. 2017;27:856–60.

    Article  PubMed  Google Scholar 

  112. Meinke P, Schirmer EC. The increasing relevance of nuclear envelope myopathies. Curr Opin Neurol. 2016;29:651–61.

    Article  CAS  PubMed  Google Scholar 

  113. Crisp M, Liu Q, Roux K, et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006;172:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Meinke P, Schirmer EC. LINC’ing form and function at the nuclear envelope. FEBS Lett. 2015;589:2514–21.

    Article  CAS  PubMed  Google Scholar 

  115. Wong X, Luperchio TR, Reddy KL. NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation. Curr Opin Cell Biol. 2014;28:105–20.

    Article  CAS  PubMed  Google Scholar 

  116. de Las Heras JI, Meinke P, Batrakou DG, et al. Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus. 2013;4:460–77.

    Article  PubMed  Google Scholar 

  117. Manilal S, Nguyen TM, Sewry CA, et al. The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Genet. 1996;5:801–8.

    Article  CAS  PubMed  Google Scholar 

  118. Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015;84:131–64.

    Article  CAS  PubMed  Google Scholar 

  119. Goldmann WH. Intermediate filaments and cellular mechanics. Cell Biol Int. 2018;42:132–8.

    Article  CAS  PubMed  Google Scholar 

  120. Mendez-Lopez I, Worman HJ. Inner nuclear membrane proteins: impact on human disease. Chromosoma. 2012;121:153–67.

    Article  CAS  PubMed  Google Scholar 

  121. Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet. 2006;7:369–405.

    Article  CAS  PubMed  Google Scholar 

  122. Raffaele Di Barletta M, Ricci E, Galluzzi G, et al. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet. 2000;66:1407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jimenez-Escrig A, Gobernado I, Garcia-Villanueva M, et al. Autosomal recessive Emery-Dreifuss muscular dystrophy caused by a novel mutation (R225Q) in the lamin A/C gene identified by exome sequencing. Muscle Nerve. 2012;45:605–10.

    Article  CAS  PubMed  Google Scholar 

  124. Bione S, Maestrini E, Rivella S, et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet. 1994;8:323–7.

    Article  CAS  PubMed  Google Scholar 

  125. Bonne G, Di Barletta MR, Varnous S, et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21:285–8.

    Article  CAS  PubMed  Google Scholar 

  126. Emery AE. Emery-Dreifuss muscular dystrophy - a 40 year retrospective. Neuromuscul Disord. 2000;10:228–32.

    Article  CAS  PubMed  Google Scholar 

  127. Koch AJ, Holaska JM. Emerin in health and disease. Semin Cell Dev Biol. 2014;29:95–106.

    Article  CAS  PubMed  Google Scholar 

  128. Emery AE. Emery-Dreifuss syndrome. J Med Genet. 1989;26:637–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sewry CA, Brown SC, Mercuri E, et al. Skeletal muscle pathology in autosomal dominant Emery-Dreifuss muscular dystrophy with lamin A/C mutations. Neuropathol Appl Neurobiol. 2001;27:281–90.

    Article  CAS  PubMed  Google Scholar 

  130. Menezes MP, Waddell LB, Evesson FJ, et al. Importance and challenge of making an early diagnosis in LMNA-related muscular dystrophy. Neurology. 2012;78:1258–63.

    Article  CAS  PubMed  Google Scholar 

  131. Muntoni F, Brockington M, Torelli S, et al. Defective glycosylation in congenital muscular dystrophies. Curr Opin Neurol. 2004;17:205–9.

    Article  CAS  PubMed  Google Scholar 

  132. Yoshida A, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 2001;1:717–24.

    Article  CAS  PubMed  Google Scholar 

  133. Chiba A, Matsumura K, Yamada H, et al. Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J Biol Chem. 1997;272:2156–62.

    Article  CAS  PubMed  Google Scholar 

  134. Manya H, Chiba A, Yoshida A, et al. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci U S A. 2004;101:500–5.

    Article  CAS  PubMed  Google Scholar 

  135. Reed UC. Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. Arq Neuropsiquiatr. 2009;67:343–62.

    Article  PubMed  Google Scholar 

  136. Kondo-Iida E, Kobayashi K, Watanabe M, et al. Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet. 1999;8:2303–9.

    Article  CAS  PubMed  Google Scholar 

  137. de Bernabe DB, van Bokhoven H, van Beusekom E, et al. A homozygous nonsense mutation in the fukutin gene causes a Walker-Warburg syndrome phenotype. J Med Genet. 2003;40:845–8.

    Article  PubMed  Google Scholar 

  138. Yoshioka M. Phenotypic spectrum of Fukutinopathy: most severe phenotype of Fukutinopathy. Brain Dev. 2009;31:419–22.

    Article  PubMed  Google Scholar 

  139. Balci B, Uyanik G, Dincer P, et al. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord. 2005;15:271–5.

    Article  PubMed  Google Scholar 

  140. Beltran-Valero de Bernabe D, Currier S, Steinbrecher A, et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet. 2002;71:1033–43.

    Article  PubMed  PubMed Central  Google Scholar 

  141. van Reeuwijk J, Janssen M, van den Elzen C, et al. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet. 2005;42:907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Brockington M, Blake DJ, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet. 2001;69:1198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brockington M, Yuva Y, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet. 2001;10:2851–9.

    Article  CAS  PubMed  Google Scholar 

  144. Longman C, Brockington M, Torelli S, et al. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet. 2003;12:2853–61.

    Article  CAS  PubMed  Google Scholar 

  145. von Renesse A, Petkova MV, Lutzkendorf S, et al. POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet. 2014;51:275–82.

    Article  CAS  Google Scholar 

  146. Di Costanzo S, Balasubramanian A, Pond HL, et al. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet. 2014;23:5781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Minetti C, Bado M, Broda P, et al. Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency. Am J Pathol. 2002;160:265–70.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Williams TM, Lisanti MP. The Caveolin genes: from cell biology to medicine. Ann Med. 2004;36:584–95.

    Article  CAS  PubMed  Google Scholar 

  149. Parton RG. Caveolae and caveolins. Curr Opin Cell Biol. 1996;8:542–8.

    Article  CAS  PubMed  Google Scholar 

  150. Gazzerro E, Sotgia F, Bruno C, et al. Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet. 2010;18:137–45.

    Article  CAS  PubMed  Google Scholar 

  151. Galbiati F, Razani B, Lisanti MP. Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med. 2001;7:435–41.

    Article  CAS  PubMed  Google Scholar 

  152. Song KS, Scherer PE, Tang Z, et al. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem. 1996;271:15160–5.

    Article  CAS  PubMed  Google Scholar 

  153. Crosbie RH, Yamada H, Venzke DP, et al. Caveolin-3 is not an integral component of the dystrophin glycoprotein complex. FEBS Lett. 1998;427:279–82.

    Article  CAS  PubMed  Google Scholar 

  154. Ilsley JL, Sudol M, Winder SJ. The WW domain: linking cell signalling to the membrane cytoskeleton. Cell Signal. 2002;14:183–9.

    Article  CAS  PubMed  Google Scholar 

  155. Sotgia F, Lee JK, Das K, et al. Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem. 2000;275:38048–58.

    Article  CAS  PubMed  Google Scholar 

  156. Herrmann R, Straub V, Blank M, et al. Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum Mol Genet. 2000;9:2335–40.

    Article  CAS  PubMed  Google Scholar 

  157. Scalco RS, Gardiner AR, Pitceathly RD, et al. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: expanding the phenotypic spectrum of caveolinopathies. Neuromuscul Disord. 2016;26:504–10.

    Article  PubMed  Google Scholar 

  158. Bruno C, Sotgia F, Gazzerro E, et al. Caveolinopathies. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews((R)). Seattle: University of Washington; 1993.

    Google Scholar 

  159. Woodman SE, Sotgia F, Galbiati F, et al. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology. 2004;62:538–43.

    Article  CAS  PubMed  Google Scholar 

  160. Anderson LV, Davison K, Moss JA, et al. Characterization of monoclonal antibodies to calpain 3 and protein expression in muscle from patients with limb-girdle muscular dystrophy type 2A. Am J Pathol. 1998;153:1169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Anderson LV, Harrison RM, Pogue R, et al. Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscul Disord. 2000;10:553–9.

    Article  CAS  PubMed  Google Scholar 

  162. Haravuori H, Vihola A, Straub V, et al. Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene. Neurology. 2001;56:869–77.

    Article  CAS  PubMed  Google Scholar 

  163. Spencer MJ, Tidball JG, Anderson LV, et al. Absence of calpain 3 in a form of limb-girdle muscular dystrophy (LGMD2A). J Neurol Sci. 1997;146:173–8.

    Article  CAS  PubMed  Google Scholar 

  164. Talim B, Ognibene A, Mattioli E, et al. Normal calpain expression in genetically confirmed limb-girdle muscular dystrophy type 2A. Neurology. 2001;56:692–3.

    Article  CAS  PubMed  Google Scholar 

  165. Fanin M, Angelini C. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: the yield and the pitfalls. Muscle Nerve. 2015;52:163–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaspar, B.L., Vasishta, R.K., Radotra, B.D. (2019). Muscular Dystrophies. In: Myopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1462-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1462-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1461-2

  • Online ISBN: 978-981-13-1462-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics