Advertisement

Ecological Study on Biomineralization in Pinctada fucata

  • Rongqing Zhang
  • Liping Xie
  • Zhenguang Yan
Chapter

Abstract

Pinctada fucata inhabits in tropical and subtropical seas, so the sea water conditions have great impacts on its growth and shell formation. To determine the potential effects of global climate change and the water pollution on the oyster growth in the near future, we have conducted a series of studies about the metabolism and shell formation of P. fucata under varied stressors. Various factors controlling biomineralization, such as genes, environmental factors, and ions that ocean acidification (OA), ocean warming (OW), and metal pollution have great effects on the metabolism, biomineralization process, as well as the immune defense, were pointed by our study. It was found that, during short-term exposure, the impact of CO2 and temperature stresses was not manifested in the shell ultrastructure, although it affected the process of biomineralization. If the stressors are present in the long-term, they will have adverse results on the biomineralization of pearls, most likely affecting pearl quality, which results in substantial economic losses for the aquaculture industry. In addition, OA and OW have a great impact on the physiological conditions of hemocytes, including altering pH value of hemolymph and increasing the total hemocyte count, total protein content, and percentage of large hyalinocytes and granulocytes, while decreasing phagocytosis ability. We query the metal accumulations and the corresponding enzymatic responses in the pearl oyster Pinctada fucata after copper exposure. We found that the gills and the digestive gland played different roles associated with distinct copper concentrations and observed the adaptation and recovery of the oysters. Our studies have indicated potential implications for predictions of the effects of environmental changes on pearl aquaculture. Moreover, it also provides theoretical basis for precautions to avoid adverse impact of environmental challenges on the marine pearl aquaculture in the near future.

Keywords

Ocean acidification Ocean warming Copper Mantle Hemocyte 

References

  1. 1.
    H. Yan, W. Soon, Y. Wang, A composite sea surface temperature record of the northern South China Sea for the past 2500 years: a unique look into seasonality and seasonal climate changes during warm and cold periods. Earth Sci. Rev. 141, 122–135 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Liu et al., Acceleration of modern acidification in the South China Sea driven by anthropogenic CO(2). Sci. Rep. 4, 5148 (2014).  https://doi.org/10.1038/srep05148 CrossRefGoogle Scholar
  3. 3.
    Z.Y. Jing, Y.Q. Qi, Z.L. Hua, H. Zhang, Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea. Cont. Shelf Res. 29, 467–478 (2009)CrossRefGoogle Scholar
  4. 4.
    S.C. Doney, V.J. Fabry, R.A. Feely, J.A. Kleypas, Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).  https://doi.org/10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  5. 5.
    C.L. Sabine et al., The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).  https://doi.org/10.1126/science.1097403 CrossRefGoogle Scholar
  6. 6.
    K. Caldeira, M.E. Wickett, Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365 (2003).  https://doi.org/10.1038/425365a CrossRefGoogle Scholar
  7. 7.
    B. Bates, Climate change and water: IPCC technical paper VI world health organization, 2009Google Scholar
  8. 8.
    K.M. Mostofa, C.Q. Liu, M. Minella, D. Vione, Balancing of ocean acidification by superoxide redox chemistry? Environ. Sci. Technol. 47, 11380–11381 (2013).  https://doi.org/10.1021/es4039177 CrossRefGoogle Scholar
  9. 9.
    S.A. Pedersen et al., Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates. Environ. Sci. Technol. 48, 12275–12284 (2014).  https://doi.org/10.1021/es501581j CrossRefGoogle Scholar
  10. 10.
    L.B. Azevedo, A.M. De Schryver, A.J. Hendriks, M.A. Huijbregts, Calcifying species sensitivity distributions for ocean acidification. Environ. Sci. Technol. 49, 1495–1500 (2015).  https://doi.org/10.1021/es505485m CrossRefGoogle Scholar
  11. 11.
    K.J. Kroeker et al., Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).  https://doi.org/10.1111/gcb.12179 CrossRefGoogle Scholar
  12. 12.
    C. Hiebenthal, E.E. Philipp, A. Eisenhauer, M. Wahl, Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Mar. Biol. 160, 2073–2087 (2013)CrossRefGoogle Scholar
  13. 13.
    G.W. Ko et al., Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster. Environ. Sci. Technol. 48, 10079–10088 (2014).  https://doi.org/10.1021/es501611u CrossRefGoogle Scholar
  14. 14.
    A.L. Campbell, S. Mangan, R.P. Ellis, C. Lewis, Ocean acidification increases copper toxicity to the early life history stages of the polychaete Arenicola marina in artificial seawater. Environ. Sci. Technol. 48, 9745–9753 (2014).  https://doi.org/10.1021/es502739m CrossRefGoogle Scholar
  15. 15.
    D. Xu et al., Effects of CO2 and seawater acidification on the early stages of Saccharina japonica development. Environ. Sci. Technol. 49, 3548–3556 (2015).  https://doi.org/10.1021/es5058924 CrossRefGoogle Scholar
  16. 16.
    R. Prego, A. Cobelo-Garcia, Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula). Environ. Pollut. 121, 425–452 (2003).  https://doi.org/10.1016/S0269-7491(02)00231-2 CrossRefGoogle Scholar
  17. 17.
    K.C. Cheung, B.H.T. Poon, C.Y. Lan, M.H. Wong, Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52, 1431–1440 (2003).  https://doi.org/10.1016/S0045-6535(03)00479-X CrossRefGoogle Scholar
  18. 18.
    P. Chavez-Crooker, N. Garrido, P. Pozo, G.A. Ahearn, Copper transport by lobster (Homarus americanus) hepatopancreatic lysosomes. Comp. Biochem. Phys. C 135, 107–118 (2003).  https://doi.org/10.1016/S1532-0456(03)00103-0 CrossRefGoogle Scholar
  19. 19.
    S. Nicholson, Cardiac and branchial physiology associated with copper accumulation and detoxication in the mytilid mussel Perna viridis (L.). J. Exp. Mar. Biol. Ecol. 295, 157–171 (2003).  https://doi.org/10.1016/S0022-0981(03)00292-2 CrossRefGoogle Scholar
  20. 20.
    F. Regoli, M. Nigro, E. Orlando, Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki. Aquat. Toxicol. 40, 375–392 (1998).  https://doi.org/10.1016/S0166-445x(97)00059-3 CrossRefGoogle Scholar
  21. 21.
    A. Anandraj, D.J. Marshall, M.A. Gregory, T.P. McClurg, Metal accumulation, filtration and O-2 uptake rates in the mussel Perna perna (Mollusca : Bivalvia) exposed to Hg2+, Cu2+ and Zn2+. Comp. Biochem. Phys. C 132, 355–363 (2002).  https://doi.org/10.1016/S1532-0456(02)00081-9 CrossRefGoogle Scholar
  22. 22.
    H.E. Parry, R.K. Pipe, Interactive effects of temperature and copper on immunocompetence and disease susceptibility in mussels (Mytilus edulis). Aquat. Toxicol. 69, 311–325 (2004).  https://doi.org/10.1016/j.aquatox.2004.06.003 CrossRefGoogle Scholar
  23. 23.
    M.P. Cajaraville et al., The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci. Total Environ. 247, 295–311 (2000).  https://doi.org/10.1016/S0048-9697(99)00499-4 CrossRefGoogle Scholar
  24. 24.
    S. Nicholson, P.K.S. Lam, Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae : Bivalvia). Environ. Int. 31, 121–132 (2005).  https://doi.org/10.1016/j.envint.2004.05.007 CrossRefGoogle Scholar
  25. 25.
    A. Viarengo, L. Canesi, Mussels as biological indicators of pollution. Aquaculture 94, 225–243 (1991).  https://doi.org/10.1016/0044-8486(91)90120-V CrossRefGoogle Scholar
  26. 26.
    A. Orbea, M. Ortiz-Zarragoitia, M. Sole, C. Porte, M.P. Cajaraville, Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquat. Toxicol. 58, 75–98 (2002).  https://doi.org/10.1016/S0166-445x(01)00226-0 CrossRefGoogle Scholar
  27. 27.
    R. Company et al., Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Mar. Environ. Res. 58, 377–381 (2004).  https://doi.org/10.1016/j.marenvres.2004.03.083 CrossRefGoogle Scholar
  28. 28.
    S. Katano, Y. Matsuo, K. Hanaoka, Arsenic compounds accumulated in pearl oyster Pinctada fucata. Chemosphere 53, 245–251 (2003).  https://doi.org/10.1016/S0045-6535(03)00447-8 CrossRefGoogle Scholar
  29. 29.
    J. Gailer, K.A. Francesconi, J.S. Edmonds, K.J. Irgolic, Metabolism of arsenic compounds by the blue mussel mytilus-edulis after accumulation from seawater spiked with arsenic compounds. Appl. Organomet. Chem. 9, 341–355 (1995).  https://doi.org/10.1002/aoc.590090408 CrossRefGoogle Scholar
  30. 30.
    D.E. Conners, A.H. Ringwood, Effects of glutathione depletion on copper cytotoxicity in oysters (Crassostrea virginica). Aquat. Toxicol. 50, 341–349 (2000).  https://doi.org/10.1016/S0166-445x(00)00092-8 CrossRefGoogle Scholar
  31. 31.
    T. Elfwing, M. Tedengren, Effects of copper on the metabolism of three species of tropical oysters, Saccostrea cucullata, Crassostrea lugubris and C-belcheri. Aquaculture 204, 157–166 (2002).  https://doi.org/10.1016/S0044-8486(01)00638-X CrossRefGoogle Scholar
  32. 32.
    B. Gagnaire, H. Thomas-Guyon, T. Renault, In vitro effects of cadmium and mercury on Pacific oyster, Crassostrea gigas (Thunberg), haemocytes. Fish Shellfish Immunol. 16, 501–512 (2004).  https://doi.org/10.1016/j.fsi.2003.08.007 CrossRefGoogle Scholar
  33. 33.
    M.W. Kelly, G.E. Hofmann, Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013)CrossRefGoogle Scholar
  34. 34.
    S.G. Li et al., Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata. Environ. Sci. Technol. 50, 1157–1165 (2016).  https://doi.org/10.1021/acs.est.5b05107 CrossRefGoogle Scholar
  35. 35.
    E. Lewis, D. Wallace, L.J. Allison, Program developed for CO2 system calculations. Tennessee: carbon dioxide information analysis center, managed by Lockheed Martin Energy Research Corporation for the US Department of Energy, 1998Google Scholar
  36. 36.
    X. Zhao et al., Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of pearl sac in pearl oyster Pinctada martensii. Mar. Biotechnol. (NY) 14, 730–739 (2012).  https://doi.org/10.1007/s10126-012-9438-3 CrossRefGoogle Scholar
  37. 37.
    L. Wang, Z. Feng, X. Wang, X. Wang, X. Zhang, DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).  https://doi.org/10.1093/bioinformatics/btp612 CrossRefGoogle Scholar
  38. 38.
    A. Conesa et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).  https://doi.org/10.1093/bioinformatics/bti610 CrossRefGoogle Scholar
  39. 39.
    T.G. Evans, F. Chan, B.A. Menge, G.E. Hofmann, Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Mol. Ecol. 22, 1609–1625 (2013).  https://doi.org/10.1111/mec.12188 CrossRefGoogle Scholar
  40. 40.
    A.E. Todgham, G.E. Hofmann, Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J. Exp. Biol. 212, 2579–2594 (2009).  https://doi.org/10.1242/jeb.032540 CrossRefGoogle Scholar
  41. 41.
    L. Harms et al., Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming. BMC Genomics 15, 789 (2014).  https://doi.org/10.1186/1471-2164-15-789 CrossRefGoogle Scholar
  42. 42.
    J. Hou, X. Liu, J. Wang, S. Zhao, B. Cui, Microarray-based analysis of gene expression in lycopersicon esculentum seedling roots in response to cadmium, chromium, mercury, and lead. Environ. Sci. Technol. 49, 1834–1841 (2015).  https://doi.org/10.1021/es504154y CrossRefGoogle Scholar
  43. 43.
    S.G. Li et al., Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Sci Rep-Uk 6, (2016). doi:ARTN 18943;  https://doi.org/10.1038/srep18943
  44. 44.
    F. Gazeau, C. Quiblier, J.M. Jansen, J.P. Gattuso, J.J. Middelburg, C.H. Heip, Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett. 34 (2007)Google Scholar
  45. 45.
    P. De Wit, S.R. Palumbi, Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol. Ecol. 22, 2884–2897 (2013).  https://doi.org/10.1111/mec.12081 CrossRefGoogle Scholar
  46. 46.
    E. Aton et al., A flow cytometric approach to study intracellular-free Ca(2+) in Crassostrea gigas haemocytes. Fish Shellfish Immunol. 20, 493–502 (2006).  https://doi.org/10.1016/j.fsi.2005.06.008 CrossRefGoogle Scholar
  47. 47.
    J.L. Fernandez-Turiel et al., trategy for water analysis using ICP-MS. Fresenius J. Anal. Chem. 368, 601–606 (2000).  https://doi.org/10.1007/s002160000552 CrossRefGoogle Scholar
  48. 48.
    S. Nicholson, Lysosomal membrane stability, phagocytosis and tolerance to emersion in the mussel Perna viridis (Bivalvia : Mytilidae) following exposure to acute, sublethal, copper. Chemosphere 52, 1147–1151 (2003).  https://doi.org/10.1016/S0045-6535(03)00328-X CrossRefGoogle Scholar
  49. 49.
    J.T. Dingle, Lysosomes: A Laboratory Handbook (North-Holland Publishing Company, Amsterdam, 1972)Google Scholar
  50. 50.
    L.D. Gardner, D. Mills, A. Wiegand, D. Leavesley, A. Elizur, Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima. BMC Genomics 12, 455 (2011).  https://doi.org/10.1186/1471-2164-12-455 CrossRefGoogle Scholar
  51. 51.
    H.M. Welladsen, P.C. Southgate, K. Heimann, The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae). Molluscan Res. 30(3), 125 (2010)Google Scholar
  52. 52.
    S. Goffredo et al., Biomineralization control related to population density under ocean acidification. Nat. Clim. Chang. 4, 593–597 (2014).  https://doi.org/10.1038/Nclimate2241 CrossRefGoogle Scholar
  53. 53.
    T.G. Evans, P. Watson-Wynn, Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins. Biol. Bull. 226, 237–254 (2014).  https://doi.org/10.1086/BBLv226n3p237 CrossRefGoogle Scholar
  54. 54.
    A. Moya et al., Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO(2)-driven acidification during the initiation of calcification. Mol. Ecol. 21, 2440–2454 (2012).  https://doi.org/10.1111/j.1365-294X.2012.05554.x CrossRefGoogle Scholar
  55. 55.
    C. Joubert et al., Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PLoS One 9, e103944 (2014).  https://doi.org/10.1371/journal.pone.0103944 CrossRefGoogle Scholar
  56. 56.
    W. Liu, X. Huang, J. Lin, M. He, Seawater acidification and elevated temperature affect gene expression patterns of the pearl oyster Pinctada fucata. PLoS One 7, e33679 (2012).  https://doi.org/10.1371/journal.pone.0033679 CrossRefGoogle Scholar
  57. 57.
    A.K. Hüning, F. Melzner, J. Thomsen, et al., Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar. Biol. 160, 1845–1861 (2013)CrossRefGoogle Scholar
  58. 58.
    H. Ehrlich, Chitin and collagen as universal and alternative templates in biomineralization. Int. Geol. Rev. 52, 661–699 (2010).  https://doi.org/10.1080/00206811003679521 CrossRefGoogle Scholar
  59. 59.
    V. Cummings et al., Ocean acidification at high latitudes: potential effects on functioning of the Antarctic Bivalve Laternula elliptica. PLoS One 6, (2011). doi:ARTN e16069;  https://doi.org/10.1371/journal.pone.0016069
  60. 60.
    G. Zhang et al., The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 49–54 (2012).  https://doi.org/10.1038/nature11413 CrossRefGoogle Scholar
  61. 61.
    S. Li et al., Morphology and classification of hemocytes in Pinctada fucata and their responses to ocean acidification and warming. Fish Shellfish Immunol. 45, 194–202 (2015).  https://doi.org/10.1016/j.fsi.2015.04.006 CrossRefGoogle Scholar
  62. 62.
    R.K. Pipe, J.A. Coles, Environmental contaminants influencing immunefunction in marine bivalve molluscs. Fish Shellfish Immunol. 5(8), 581–595 (1995)CrossRefGoogle Scholar
  63. 63.
    R.P. Kuchel, D.A. Raftos, D. Birch, N. Vella, Haemocyte morphology and function in the Akoya pearl oyster, Pinctada imbricata. J. Invertebr. Pathol. 105, 36–48 (2010).  https://doi.org/10.1016/j.jip.2010.04.011 CrossRefGoogle Scholar
  64. 64.
    S. Liang, X. Luo, W. You, L. Luo, C. Ke, The role of hybridization in improving the immune response and thermal tolerance of abalone. Fish Shellfish Immunol. 39, 69–77 (2014).  https://doi.org/10.1016/j.fsi.2014.04.014 CrossRefGoogle Scholar
  65. 65.
    L. Donaghy, A.K. Volety, Functional and metabolic characterization of hemocytes of the green mussel, Perna viridis: in vitro impacts of temperature. Fish Shellfish Immunol. 31, 808–814 (2011).  https://doi.org/10.1016/j.fsi.2011.07.018 CrossRefGoogle Scholar
  66. 66.
    B. Gagnaire, H. Frouin, K. Moreau, H. Thomas-Guyon, T. Renault, Effects of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish Shellfish Immunol. 20, 536–547 (2006).  https://doi.org/10.1016/j.fsi.2005.07.003 CrossRefGoogle Scholar
  67. 67.
    V. Matozzo et al., First evidence of immunomodulation in Bivalves under seawater acidification and increased temperature, PLoS One 7 (2012). doi:ARTN e33820;  https://doi.org/10.1371/journal.pone.0033820
  68. 68.
    G. Mitta, F. Vandenbulcke, P. Roch, Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett. 486, 185–190 (2000)CrossRefGoogle Scholar
  69. 69.
    E. Bachere et al., Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol. Rev. 198, 149–168 (2004).  https://doi.org/10.1111/j.0105-2896.2004.00115.x CrossRefGoogle Scholar
  70. 70.
    C.L. Yao, G.N. Somero, The impact of ocean warming on marine organisms. Chin. Sci. Bull. 59, 468–479 (2014).  https://doi.org/10.1007/s11434-014-0113-0 CrossRefGoogle Scholar
  71. 71.
    F. Gazeau et al., Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).  https://doi.org/10.1007/s00227-013-2219-3 CrossRefGoogle Scholar
  72. 72.
    J. Thomsen, I. Casties, C. Pansch, A. Kortzinger, F. Melzner, Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Glob. Chang. Biol. 19, 1017–1027 (2013).  https://doi.org/10.1111/gcb.12109 CrossRefGoogle Scholar
  73. 73.
    A.S. Mount, A.P. Wheeler, R.P. Paradkar, D. Snider, Hemocyte-mediated shell mineralization in the eastern oyster. Science 304, 297–300 (2004).  https://doi.org/10.1126/science.1090506 CrossRefGoogle Scholar
  74. 74.
    M.B. Johnstone et al., Cellular orchestrated biomineralization of crystalline composites on implant surfaces by the eastern oyster, Crassostrea virginica (Gmelin, 1791). J. Exp. Mar. Biol. Ecol. 463, 8–16 (2015).  https://doi.org/10.1016/j.jembe.2014.10.014 CrossRefGoogle Scholar
  75. 75.
    J.S. Gray, Biological and ecological effects of marine pollutants and their detection. Mar. Pollut. Bull. 25, 48–50 (1992).  https://doi.org/10.1016/0025-326x(92)90184-8 CrossRefGoogle Scholar
  76. 76.
    M.T. Mazorra, J.A. Rubio, J. Blasco, Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comp. Biochem. Physiol. B 131, 241–249 (2002).  https://doi.org/10.1016/S1096-4959(01)00502-4 CrossRefGoogle Scholar
  77. 77.
    R.K. Pipe, J.A. Coles, F.M.M. Carissan, K. Ramanathan, Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquat. Toxicol. 46, 43–54 (1999).  https://doi.org/10.1016/S0166-445x(98)00114-3 CrossRefGoogle Scholar
  78. 78.
    R. Xiao et al., Purification and enzymatic characterization of alkaline phosphatase from Pinctada fucata. J. Mol. Catal. B-Enzym. 17, 65–74 (2002).  https://doi.org/10.1016/S1381-1177(02)00007-3 CrossRefGoogle Scholar
  79. 79.
    P.C. Das, S. Ayyappan, B.K. Das, J.K. Jena, Nitrite toxicity in Indian major carps: sublethal effect on selected enzymes in fingerlings of Catla catla, Labeo rohita and Cirrhinus mrigala. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 138, 3–10 (2004)Google Scholar
  80. 80.
    P. Muñoz, J. Meseguer, M. Ángeles Esteban, Phenoloxidase activity in three commercial bivalve species. Changes due to natural infestation with Perkinsus atlanticus. Fish Shellfish Immunol. 20(1), 12–19 (2006)CrossRefGoogle Scholar
  81. 81.
    S. Rajalakshmi, A. Mohandas, Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotox. Environ. Safe 62, 140–143 (2005).  https://doi.org/10.1016/j.ecoenv.2005.01.003 CrossRefGoogle Scholar
  82. 82.
    A. Orbea, H. Dariush Fahimi, M.P. Cajaraville, Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochem. Cell Biol. 114, 393–404 (2000)Google Scholar
  83. 83.
    C. Dautremepuits, S. Paris-Palacios, S. Betoulle, G. Vernet, Modulation in hepatic and head kidney parameters of carp (Cyprinus carpio L.) induced by copper and chitosan. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 137, 325–333 (2004)Google Scholar
  84. 84.
    R. Chandran, A.A. Sivakumar, S. Mohandass, M. Aruchami, Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. Comp. Biochem. Phys. C 140, 422–426 (2005).  https://doi.org/10.1016/j.cca.2005.04.007 CrossRefGoogle Scholar
  85. 85.
    H.B. Akberali, J.E. Black, Behavioural responses of the bivalve Scrobicularia plana (da Costa) subjected to short-term copper (Cu II) concentrations. Mar. Environ. Res. 4(2), 97–107 (1980)CrossRefGoogle Scholar
  86. 86.
    D. Tran, E. Fournier, G. Durrieu, J.C. Massabuau, Copper detection in the Asiatic clam Corbicula fluminea: optimum valve closure response. Aquat. Toxicol. 65, 317–327 (2003)CrossRefGoogle Scholar
  87. 87.
    G. Jing, Y. Li, L.P. Xie, R.Q. Zhang, Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comp. Biochem. Phys. C 144, 184–190 (2006).  https://doi.org/10.1016/j.cbpc.2006.08.005 CrossRefGoogle Scholar
  88. 88.
    B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, et al., Global quantification of mammalian gene expression control. Nature 473, 337 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rongqing Zhang
    • 1
  • Liping Xie
    • 1
  • Zhenguang Yan
    • 2
  1. 1.School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.Chinese Research Academy of Environmental SciencesBeijingChina

Personalised recommendations