Advertisement

Cellular Regulation of Biomineralization in Pinctada fucata

  • Rongqing Zhang
  • Liping Xie
  • Zhenguang Yan
Chapter

Abstract

Because it is widely recognized that the mantle tissue controls nacre precipitation, intensive studies have been conducted to unravel the regulatory mechanism underlying nacre formation. In this chapter, we will focus on the cellular regulation of shell formation in the pearl oyster Pinctada fucata. First, the morphology and proliferation rate in different parts of the mantle tissue have been investigated, and a proliferation hot spot located in the center of the thinnest mantle region was found. However, mantle tissues mainly composed of the mantle edge were used for primary cell culture, due to their high yield of migrated mantle cells. The primary mantle cell culture is used to study how the mantle cells regulate calcium carbonate precipitation. It was found that the physiological functions of the mantle cells were maintained in vitro. High expression of many shell matrix proteins, including ACCBP, Pif80, and nacrein, and high activities of carbonic anhydrase and alkaline phosphatase were detected. Numerous crystals were found inside the cultured cells by polar light microscopy and scanning electron microscopy, and FTIR and XRD analysis demonstrated that these particles were amorphous calcium carbonate (ACC). What’s more, the cultured mantle cells promoted and regulated calcium carbonate precipitation in the culture dishes. These results showed that mantle cells may directly participate in shell formation. In addition, we have studied the function of hemocytes in shell formation. Hemocytes were identified from P. fucata and found to be present in the extrapallial space (EPS). Many components involved in immunity and calcification were identified by proteomics analysis. Poststimulation of lipopolysaccharide and shell damage, most of the tested immune genes and calcification, was upregulated. Moreover, polar light microscopy, scanning electron microscopy, and energy spectrum showed that some hemocytes carried crystals of calcium carbonate, indicating they participated in both immunity and biomineralization. Our studies elucidated the vital roles of mantle cells and hemocytes in regulating shell growth and nacre formation, which would shed light on the improvement of the cultured pearl quality.

Keywords

Biomineralization Mantle cell Hemocyte Nacre Cell culture 

References

  1. 1.
    C. Zhang, R.Q. Zhang, Matrix proteins in the outer shells of molluscs. Mar. Biotechnol. 8, 572–586 (2006).  https://doi.org/10.1007/s10126-005-6029-6 CrossRefGoogle Scholar
  2. 2.
    Z. Fang, Q. Feng, Y. Chi, et al., Investigation of cell proliferation and differentiation in the mantle of Pinctada fucata (Bivalve, Mollusca). Mar. Biol. 153, 745–754 (2008)CrossRefGoogle Scholar
  3. 3.
    B. Westermann, H. Schmidtberg, K. Beuerlein, Functional morphology of the mantle of Nautilus pompilius (Mollusca, Cephalopoda). J. Morphol. 264, 277–285 (2005).  https://doi.org/10.1002/jmor.10321 CrossRefGoogle Scholar
  4. 4.
    T. Takeuchi, K. Endo, Biphasic and dually coordinated expression of the genes encoding major shell matrix proteins in the pearl oyster Pinctada fucata. Mar. Biotechnol. (N.Y.) 8, 52–61 (2006).  https://doi.org/10.1007/s10126-005-5037-x CrossRefGoogle Scholar
  5. 5.
    S. Sudo et al., Structures of mollusc shell framework proteins. Nature 387, 563–564 (1997).  https://doi.org/10.1038/42391 CrossRefGoogle Scholar
  6. 6.
    J.M. Poncet et al., In vitro synthesis of proteoglycans and collagen in primary cultures of mantle cells from the nacreous mollusk, Haliotis tuberculata: a new model for study of molluscan extracellular matrix. Mar. Biotechnol. 2, 387–398 (2000)Google Scholar
  7. 7.
    I.J. Domart-Coulon, D.C. Elbert, E.P. Scully, P.S. Calimlim, G.K. Ostrander, Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proc. Natl. Acad. Sci. U. S. A. 98, 11885–11890 (2001).  https://doi.org/10.1073/pnas.211439698 CrossRefGoogle Scholar
  8. 8.
    C.P. Suja, N. Sukumaran, S. Dharmaraj, Effect of culture media and tissue extracts in the mantle explant culture of abalone, Haliotis varia Linnaeus. Aquaculture 271, 516–522 (2007).  https://doi.org/10.1016/j.aquaculture.2007.04.086 CrossRefGoogle Scholar
  9. 9.
    N. Gong et al., Characterization of calcium deposition and shell matrix protein secretion in primary mantle tissue culture from the marine pearl oyster Pinctada fucata. Mar. Biotechnol. (N.Y.) 10, 457–465 (2008).  https://doi.org/10.1007/s10126-008-9081-1 CrossRefGoogle Scholar
  10. 10.
    B. Rinkevich, Marine invertebrate cell cultures: New millennium trends. Mar. Biotechnol. 7, 429–439 (2005).  https://doi.org/10.1007/s10126-004-0108-y CrossRefGoogle Scholar
  11. 11.
    C.M. Wen, G.H. Kou, S.N. Chen, Establishment of Cell-Lines from the Pacific Oyster. In Vitro Cell Dev-An. 29a, 901–903 (1993)CrossRefGoogle Scholar
  12. 12.
    D. Sud, D. Doumenc, E. Lopez, C. Milet, Role of water-soluble matrix fraction, extracted from the nacre of Pinctada maxima, in the regulation of cell activity in abalone mantle cell culture (Haliotis tuberculata). Tissue Cell 33, 154–160 (2001).  https://doi.org/10.1054/tice.2000.0166 CrossRefGoogle Scholar
  13. 13.
    N.P. Gong et al., Characterization of calcium deposition and shell matrix protein secretion in primary mantle tissue culture from the marine pearl oyster Pinctada fucata. Mar. Biotechnol. 10, 457–465 (2008).  https://doi.org/10.1007/s10126-008-9081-1 CrossRefGoogle Scholar
  14. 14.
    S.K. Barik, J.K. Jena, K.J. Ram, CaCO3 crystallization in primary culture of mantle epithelial cells of freshwater pearl mussel. Curr. Sci. India 86, 730–734 (2004)Google Scholar
  15. 15.
    T. Samata, H. Somiya, C. Horita, S. Akera, SEM observation of microcrystals developed over black secretion on the cultured tissue of the pearl oyster Pinctada fucata. Fish. Sci. 60, 343–344 (1994)CrossRefGoogle Scholar
  16. 16.
    Z. Fang, Q.L. Feng, Y.Z. Chi, L.P. Xie, R.Q. Zhang, Investigation of cell proliferation and differentiation in the mantle of Pinctada fucata (Bivalve, Mollusca). Mar. Biol. 153, 745–754 (2008).  https://doi.org/10.1007/s00227-007-0851-5 CrossRefGoogle Scholar
  17. 17.
    A.S. Mount, A.P. Wheeler, R.P. Paradkar, D. Snider, Hemocyte-mediated shell mineralization in the eastern oyster. Science 304, 297–300 (2004).  https://doi.org/10.1126/science.1090506 CrossRefGoogle Scholar
  18. 18.
    S. Li et al., Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata. Fish Shellfish Immunol. 51, 263–270 (2016).  https://doi.org/10.1016/j.fsi.2016.02.027 CrossRefGoogle Scholar
  19. 19.
    B. Zaldibar, I. Cancio, I. Marigomez, Circatidal variation in epithelial cell proliferation in the mussel digestive gland and stomach. Cell Tissue Res. 318, 395–402 (2004).  https://doi.org/10.1007/s00441-004-0960-0 CrossRefGoogle Scholar
  20. 20.
    K. Okudela, T. Ito, Y. Kameda, N. Nakamura, H. Kitamura, lmmunohistochemical analysis for cell proliferation-related protein expression in small cell carcinoma of the esophagus. Histol. Histopathol. 14, 479–485 (1999)Google Scholar
  21. 21.
    A. Machii, K.T. Wada, Some marine invertebrates tissue culture. Invertebrate cell system applications 2, 225–233 (1989)Google Scholar
  22. 22.
    I. Domart-Coulon, S. Auzoux-Bordenave, D. Doumenc, M. Khalanski, Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures. Toxicol Vitro 14, 245–251 (2000).  https://doi.org/10.1016/S0887-2333(00)00011-4 CrossRefGoogle Scholar
  23. 23.
    N.P. Gong et al., Culture of outer epithelial cells from mantle tissue to study shell matrix protein secretion for biomineralization. Cell Tissue Res. 333, 493–501 (2008).  https://doi.org/10.1007/s00441-008-0609-5 CrossRefGoogle Scholar
  24. 24.
    S. Puverel et al., Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24, 149–156 (2005).  https://doi.org/10.1007/s00338-004-0456-0 CrossRefGoogle Scholar
  25. 25.
    A. Natoli et al., Bio-vaterite formation by glycoproteins from freshwater pearls. Micron 41, 359–366 (2010).  https://doi.org/10.1016/j.micron.2010.01.002 CrossRefGoogle Scholar
  26. 26.
    S. Li et al., Morphology and classification of hemocytes in Pinctada fucata and their responses to ocean acidification and warming. Fish Shellfish Immunol. 45, 194–202 (2015).  https://doi.org/10.1016/j.fsi.2015.04.006 CrossRefGoogle Scholar
  27. 27.
    N. Koga, Y.Z. Nakagoe, H. Tanaka, Crystallization of amorphous calcium carbonate. Thermochim. Acta 318, 239–244 (1998).  https://doi.org/10.1016/S0040-6031(98)00348-7 CrossRefGoogle Scholar
  28. 28.
    S. Castellanos-Martinez, M. Prado-Alvarez, A. Lobo-da-Cunha, C. Azevedo, C. Gestal, Morphologic, cytometric and functional characterization of the common octopus (Octopus vulgaris) hemocytes. Dev. Comp. Immunol. 44, 50–58 (2014).  https://doi.org/10.1016/j.dci.2013.11.013 CrossRefGoogle Scholar
  29. 29.
    V. Matozzo et al., First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS One 7 (2012). ARTN e33820301371/journal.pone.0033820CrossRefGoogle Scholar
  30. 30.
    J.L. Fernandez-Turiel et al., Strategy for water analysis using ICP-MS. Fresen. J. Anal. Chem. 368, 601–606 (2000).  https://doi.org/10.1007/s002160000552 CrossRefGoogle Scholar
  31. 31.
    C. Liu et al., In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci. Rep. 5, 17269 (2015).  https://doi.org/10.1038/srep17269 CrossRefGoogle Scholar
  32. 32.
    Tsujii, T. Studies on the mechanism of shell-and pearl-formation in Mollusca. 三重県立大学水産学部紀要 5.1 (1960)Google Scholar
  33. 33.
    A. Bubel, An electron-microscope investigation of the cells lining the outer surface of the mantle in some marine molluscs. Mar. Biol. 21, 245–255 (1973)CrossRefGoogle Scholar
  34. 34.
    A. Garciagasca, R.I. Ochoabaez, M. Betancourt, Microscopic anatomy of the mantle of the pearl oyster Pinctada-Mazatlanica (Hanley, 1856). J. Shellfish Res. 13, 85–91 (1994)Google Scholar
  35. 35.
    E. Kniprath, Growth of the Shell-field in Mytilus (Bivalvia). Zool. Scr. 7(1), 119–120 (1978)CrossRefGoogle Scholar
  36. 36.
    T.G. Dix, Histochemistry of mantle and pearl sac secretory cells in Pinctada maxima (Lamellibranchia). Aust. J. Zool. 20, 359–368 (1972)CrossRefGoogle Scholar
  37. 37.
    M. Morigi et al., Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26, 2075–2082 (2008).  https://doi.org/10.1634/stemcells.2007-0795 CrossRefGoogle Scholar
  38. 38.
    N.L. Leibson, L.T. Frolova, Winter-spring essential reorganization of cell proliferation in the digestive tract epithelia in the mussel Crenomytilus grayanus. Mar. Biol. 118, 471–477 (1994)CrossRefGoogle Scholar
  39. 39.
    R. Hanselmann, R. Smolowitz, Identification of proliferating cells in hard clams. Biol. Bull. 199, 199–200 (2000).  https://doi.org/10.2307/1542896 CrossRefGoogle Scholar
  40. 40.
    C.M. Yonge, XV—The digestive diverticula in the Lamellibranchs. Earth Environ. Sci. Trans. R. Soc. Edinb. 54, 703–718 (1926)CrossRefGoogle Scholar
  41. 41.
    R.W. McQuiston, Cyclic activity in the digestive diverticula of Lasaea rubra (Montagu)(Bivalvia: Eulamellibranchia). J. Molluscan Stud. 38, 483–492 (1969)Google Scholar
  42. 42.
    M.P. Cajaraville, G. Diez, I.A. Marigomez, E. Angulo, Responses of basophilic cells of the digestive gland of mussels to petroleum hydrocarbon exposure. Dis. Aquat. Org. 9, 221–228 (1990).  https://doi.org/10.3354/dao009221 CrossRefGoogle Scholar
  43. 43.
    L.V. Salvini-Plawen, The structure and function of molluscan digestive systems. The Mollusca 11, 301–379 (1988)Google Scholar
  44. 44.
    J.D. Icely, J.A. Nott, Digestion and absorption: digestive system and associated organs. Microscopic anatomy of invertebrates 10, 147–201 (1992)Google Scholar
  45. 45.
    G. Vogt, Life-cycle and functional cytology of the Hepatopancreatic cells of Astacus-Astacus (Crustacea, Decapoda). Zoomorphology 114, 83–101 (1994).  https://doi.org/10.1007/Bf00396642 CrossRefGoogle Scholar
  46. 46.
    I. Marigomez, X. Lekube, I. Cancio, Immunochemical localisation of proliferating cells in mussel digestive gland tissue. Histochem. J. 31, 781–788 (1999).  https://doi.org/10.1023/A:1003950003381 CrossRefGoogle Scholar
  47. 47.
    P.C. Denny, C. Yang, D.K. Klauser, P.A. Denny, Parenchymal-cell proliferation and mechanisms for maintenance of granular duct and acinar cell-populations in adult male-mouse submandibular-gland. Anat. Rec. 235, 475–485 (1993).  https://doi.org/10.1002/ar.1092350316 CrossRefGoogle Scholar
  48. 48.
    A.G. Checa, Fabricational morphology of oblique ribs in bivalves. J. Morphol. 254, 195–209 (2002).  https://doi.org/10.1002/jmor.10028 CrossRefGoogle Scholar
  49. 49.
    G. Pannella, Paleontological Clocks and the History of the Earth’s Rotation. Growth Rhythms and the History of the Earth’s Rotation (Wiley, London, 1975), pp. 253–284Google Scholar
  50. 50.
    E. Naylor, Crab clockwork: the case for interactive circatidal and circadian oscillators controlling rhythmic locomotor activity of Carcinus maenas. Chronobiol. Int. 13, 153–161 (1996).  https://doi.org/10.3109/07420529609012649 CrossRefGoogle Scholar
  51. 51.
    P. Abello, C.G. Warman, E. Naylor, Circatidal moulting rhythm in the shore crab Carcinus maenas. J. Mar. Biol. Assoc. U. K. 77, 277–279 (1997)CrossRefGoogle Scholar
  52. 52.
    G.R. Clark, Periodic Growth and Biological Rhythms in Experimentally Grown Bivalves. Growth Rhythms and The History of the Earth’s Rotation (Wiley, London, 1975), pp. 103–117Google Scholar
  53. 53.
    B. Schöne, K. Tanabe, D.L. Dettman, S. Sato, Environmental controls on shell growth rates and d 18 O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar. Biol. 142, 473–485 (2003)CrossRefGoogle Scholar
  54. 54.
    L.M. Joll, Daily growth rings in juvenile saucer scallops, Amusium balloti (Bernardi). J. Shellfish Res. 7, 73–76 (1988)Google Scholar
  55. 55.
    G.J. Parsons, S.M.C. Robinson, J.C. Roff, M.J. Dadswell, Daily growth-rates as indicated by valve ridges in Postlarval Giant scallop (Placopecten-Magellanicus) (Bivalvia, Pectinidae). Can. J. Fish. Aquat. Sci. 50, 456–469 (1993).  https://doi.org/10.1139/f93-053 CrossRefGoogle Scholar
  56. 56.
    I. Thompson, Biological Clocks and Shell Growth in Bivalves. Growth Rhythms and the History of the Earth’s Rotation (Wiley, London, 1975), pp. 149–161Google Scholar
  57. 57.
    C. Jolly et al., Zonal localization of shell matrix proteins in mantle of Haliotis tuberculata (Mollusca, Gastropoda). Mar. Biotechnol. 6, 541–551 (2004).  https://doi.org/10.1007/s10126-004-3129-7 CrossRefGoogle Scholar
  58. 58.
    M. Awaji, A. Machii, Fundamental studies on in vivo and in vitro pearl formation—Contribution of outer epithelial cells of pearl oyster mantle and pearl sacs. Aqua BioSci. Monogr. 4, 1–39 (2011).  https://doi.org/10.5047/absm.2011.00401.0001 CrossRefGoogle Scholar
  59. 59.
    J. Mitsuhashi, Invertebrate Tissue Culture Methods (Springer, New York, 2002)CrossRefGoogle Scholar
  60. 60.
    H. Miyamoto, F. Miyoshi, J. Kohno, The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zool. Sci. 22, 311–315 (2005).  https://doi.org/10.2108/zsj.22.311 CrossRefGoogle Scholar
  61. 61.
    H. Miyamoto et al., A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. U. S. A. 93, 9657–9660 (1996).  https://doi.org/10.1073/pnas.93.18.9657 CrossRefGoogle Scholar
  62. 62.
    H. Miyamoto et al., A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. U. S. A. 93, 9657–9660 (1996)CrossRefGoogle Scholar
  63. 63.
    M. Rousseau, C. Milet, E. Plouguerne, E. Lopez, M. Fouchereau-Peron, Biomineralisation markers during a phase of active growth in pinctada margaritifera. J. Bone Miner. Res. 18, S107–S107 (2003)Google Scholar
  64. 64.
    M. Rousseau et al., Multiscale structure of sheet nacre. Biomaterials 26, 6254–6262 (2005).  https://doi.org/10.1016/j.biomaterials.2005.03.028 CrossRefGoogle Scholar
  65. 65.
    M.A. Crenshaw, The inorganic composition of molluscan extrapallial fluid. Biol. Bull. 143, 506–512 (1972).  https://doi.org/10.2307/1540180 CrossRefGoogle Scholar
  66. 66.
    D.E. Jacob et al., Nanostructure, composition and mechanisms of bivalve shell growth. Geochim. Cosmochim. Acta 72, 5401–5415 (2008).  https://doi.org/10.1016/j.gca.2008.08.019 CrossRefGoogle Scholar
  67. 67.
    L. Xiang et al., Amorphous calcium carbonate precipitation by cellular biomineralization in mantle cell cultures of Pinctada fucata. PLoS One 9 (2014). UNSP e113150691371/journal.pone.0113150CrossRefGoogle Scholar
  68. 68.
    Y. Miyazaki, T. Nishida, H. Aoki, T. Samata, Expression of genes responsible for biomineralization of Pinctada fucata during development. Comp. Biochem. Phys. B. 155, 241–248 (2010).  https://doi.org/10.1016/j.cbpb.2009.11.009 CrossRefGoogle Scholar
  69. 69.
    I.M. Weiss, N. Tuross, L. Addadi, S. Weiner, Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zool. 293, 478–491 (2002).  https://doi.org/10.1002/jez.90004 CrossRefGoogle Scholar
  70. 70.
    R. Collin, J. Voltzow, Initiation, calcification, and form of larval “archaeogastropod” shells. J. Morphol. 235, 77–89 (1998)CrossRefGoogle Scholar
  71. 71.
    S. Auzoux-Bordenave et al., Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. J. Struct. Biol. 171, 277–290 (2010).  https://doi.org/10.1016/j.jsb.2010.05.012 CrossRefGoogle Scholar
  72. 72.
    Z. Ma et al., A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata. J. Biol. Chem. 282, 23253–23263 (2007).  https://doi.org/10.1074/jbc.M700001200 CrossRefGoogle Scholar
  73. 73.
    E. Beniash, L. Addadi, S. Weiner, Cellular control over spicule formation in sea urchin embryos: A structural approach. J. Struct. Biol. 125, 50–62 (1999).  https://doi.org/10.1006/jsbi.1998.4081 CrossRefGoogle Scholar
  74. 74.
    C. McDougall, K. Green, D.J. Jackson, B.M. Degnan, Ultrastructure of the mantle of the gastropod Haliotis asinina and mechanisms of shell regionalization. Cells Tissues Organs 194, 103–107 (2011).  https://doi.org/10.1159/000324213 CrossRefGoogle Scholar
  75. 75.
    Z.G. Yan et al., In vivo and in vitro biomineralization in the presence of the inner-shell film of pearl oyster. Acta Oceanol. Sin. 30, 87–93 (2011).  https://doi.org/10.1007/s13131-011-0094-7 CrossRefGoogle Scholar
  76. 76.
    L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem. Eur. J. 12, 981–987 (2006).  https://doi.org/10.1002/chem.200500980 CrossRefGoogle Scholar
  77. 77.
    X. Wang et al., Oyster shell proteins originate from multiple organs and their probable transport pathway to the shell formation front. PLoS One 8, e66522 (2013).  https://doi.org/10.1371/journal.pone.0066522 CrossRefGoogle Scholar
  78. 78.
    G. Zhang et al., The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 49–54 (2012).  https://doi.org/10.1038/nature11413 CrossRefGoogle Scholar
  79. 79.
    S. Raz, S. Weiner, L. Addadi, Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications. Adv. Mater. 12, 38–42 (2000). https://doi.org/10.1002/(Sici)1521-4095(200001)12:1<38::Aid-Adma38>3.0.Co;2-I CrossRefGoogle Scholar
  80. 80.
    D. Kralj, J. Kontrec, L. Brecevic, G. Falini, V. Nothig-Laslo, Effect of inorganic anions on the morphology and structure of magnesium calcite. Chem. Eur. J. 10, 1647–1656 (2004).  https://doi.org/10.1002/chem.200305313 CrossRefGoogle Scholar
  81. 81.
    J. Stolarski, M. Mazur, Nanostructure of biogenic versus abiogenic calcium carbonate crystals. Acta Palaeontol. Pol. 50, 847–865 (2005)Google Scholar
  82. 82.
    P.L. Clode, A.T. Marshall, Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220, 153–161 (2003).  https://doi.org/10.1007/s00709-002-0046-3 CrossRefGoogle Scholar
  83. 83.
    W. Kong, S.G. Li, L. Xiang, L.P. Xie, R.Q. Zhang, Calcium carbonate mineralization mediated by in vitro cultured mantle cells from Pinctada fucata. Biochem. Bioph. Res. Commun. 463, 1053–1058 (2015).  https://doi.org/10.1016/j.bbrc.2015.06.057 CrossRefGoogle Scholar
  84. 84.
    L. Xiang, W. Kong, J. Su, J. Liang, G. Zhang, Amorphous calcium carbonate precipitation by cellular biomineralization in mantle cell cultures of Pinctada fucata (vol 9, e113150, 2014). PLoS One 9 (2014). ARTN e116034871371/journal.pone.0116034CrossRefGoogle Scholar
  85. 85.
    M.B. Johnstone et al., Cellular orchestrated biomineralization of crystalline composites on implant surfaces by the eastern oyster, Crassostrea Virginica. J. Shellfish Res. 34, 644–644 (2015)Google Scholar
  86. 86.
    L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15, 959–970 (2003)CrossRefGoogle Scholar
  87. 87.
    A.P. Wheeler, K.W. Rusenko, D.M. Swift, C.S. Sikes, Regulation of in vitro and in vivo CaCO 3 crystallization by fractions of oyster shell organic matrix. Mar. Biol. 98, 71–80 (1988)CrossRefGoogle Scholar
  88. 88.
    C. Zhang, L. Xie, J. Huang, X. Liu, R. Zhang, A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem. Biophys. Res. Commun. 344, 735–740 (2006).  https://doi.org/10.1016/j.bbrc.2006.03.179 CrossRefGoogle Scholar
  89. 89.
    S. Weiner, L. Addadi, Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689–702 (1997).  https://doi.org/10.1039/a604512j CrossRefGoogle Scholar
  90. 90.
    A.G. Fincham, J. Moradian-Oldak, J.P. Simmer, The structural biology of the developing dental enamel matrix. J. Struct. Biol. 126, 270–299 (1999).  https://doi.org/10.1006/jsbi.1999.4130 CrossRefGoogle Scholar
  91. 91.
    E. Kadar, A. Lobo-da-Cunha, C. Azevedo, Mantle-to-shell CaCO3 transfer during shell repair at different hydrostatic pressures in the deep-sea vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae). Mar. Biol. 156, 959–967 (2009).  https://doi.org/10.1007/s00227-009-1140-2 CrossRefGoogle Scholar
  92. 92.
    V. Matozzo, L. Bailo, A first insight into haemocytes of the smooth venus clam Callista chione. Fish Shellfish Immunol. 42, 494–502 (2015).  https://doi.org/10.1016/j.fsi.2014.11.034 CrossRefGoogle Scholar
  93. 93.
    R.P. Kuchel, D.A. Raftos, D. Birch, N. Vella, Haemocyte morphology and function in the Akoya pearl oyster, Pinctada imbricata. J. Invertebr. Pathol. 105, 36–48 (2010).  https://doi.org/10.1016/j.jip.2010.04.011 CrossRefGoogle Scholar
  94. 94.
    C. Lopez, M.J. Carballal, C. Azevedo, A. Villalba, Morphological characterization of the hemocytes of the clam, Ruditapes decussatus (Mollusca: Bivalvia). J. Invertebr. Pathol. 69, 51–57 (1997).  https://doi.org/10.1006/jipa.1996.4639 CrossRefGoogle Scholar
  95. 95.
    W.P.W. Vanderknaap, C.M. Adema, T. Sminia, Invertebrate blood-cells - morphological and functional-aspects of the Hemocytes in the pond snail Lymnaea-Stagnalis. Comp. Haematol. Int. 3, 20–26 (1993)CrossRefGoogle Scholar
  96. 96.
    P.M. Hine, The inter-relationships of bivalve haemocytes. Fish Shellfish Immunol. 9, 367–385 (1999).  https://doi.org/10.1006/fsim.1998.0205 CrossRefGoogle Scholar
  97. 97.
    Y.H. Xie, B.C. Hu, C.G. Wen, S.N. Mu, Morphology and phagocytic ability of hemocytes from Cristaria plicata. Aquaculture 310, 245–251 (2011).  https://doi.org/10.1016/j.aquaculture.2010.09.034 CrossRefGoogle Scholar
  98. 98.
    Y.J. Wang, M.H. Hu, M.W.L. Chiang, P.K.S. Shin, S.G. Cheung, Characterization of subpopulations and immune-related parameters of hemocytes in the green-lipped mussel Perna viridis. Fish Shellfish Immunol. 32, 381–390 (2012).  https://doi.org/10.1016/j.fsi.2011.08.024 CrossRefGoogle Scholar
  99. 99.
    W. Zhang, X. Wu, J. Sun, D. Li, Morphological and functional characterization of the hemocytes of the scallop, Chlamys farreri. J. Shellfish Res. 24, 931–936 (2005)CrossRefGoogle Scholar
  100. 100.
    C. Dang, T. Tan, D. Moffit, J.D. Deboutteville, A.C. Barnes, Gender differences in hemocyte immune parameters of bivalves: The Sydney rock oyster Saccostrea glomerata and the pearl oyster Pinctada fucata. Fish Shellfish Immunol. 33, 138–142 (2012).  https://doi.org/10.1016/j.fsi.2012.04.007 CrossRefGoogle Scholar
  101. 101.
    L. Donaghy, C. Lambert, K.S. Choi, P. Soudant, Hemocytes of the carpet shell clam (Ruditapes decussatus) and the manila clam (Ruditapes philippinarum): Current knowledge and future prospects. Aquaculture 297, 10–24 (2009).  https://doi.org/10.1016/j.aquaculture.2009.09.003 CrossRefGoogle Scholar
  102. 102.
    M.D. Rebelo et al., New Insights from the Oyster Crassostrea rhizophorae on Bivalve Circulating Hemocytes. PLoS One 8 (2013). ARTN e573841061371/journal.pone.0057384CrossRefGoogle Scholar
  103. 103.
    M.C. Mix, A general model for leukocyte cell renewal in bivalve mollusks. Mar. Fish. Rev. 38(1), 37–41 (1976)Google Scholar
  104. 104.
    S.J. Chang, S.M. Tseng, H.Y. Chou, Morphological characterization via light and electron microscopy of the hemocytes of two cultured bivalves: a comparison study between the hard clam (Meretrix lusoria) and pacific oyster (Crassostrea gigas). Zool. Stud. 44, 144–152 (2005)Google Scholar
  105. 105.
    M.B. Duchemin, M. Fournier, M. Auffret, Seasonal variations of immune parameters in diploid and triploid Pacific oysters, Crassostrea gigas (Thunberg). Aquaculture 264, 73–81 (2007).  https://doi.org/10.1016/j.aquaculture.2006.12.030 CrossRefGoogle Scholar
  106. 106.
    S. Mangkalanan, P. Sanguanrat, T. Utairangsri, K. Sritunyalucksana, C. Krittanai, Characterization of the circulating hemocytes in mud crab (Scylla olivacea) revealed phenoloxidase activity. Dev. Comp. Immunol. 44, 116–123 (2014).  https://doi.org/10.1016/j.dci.2013.11.018 CrossRefGoogle Scholar
  107. 107.
    E.C. Wootton, E.A. Dyrynda, N.A. Ratcliffe, Bivalve immunity: Comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua). Fish Shellfish Immunol. 15, 195–210 (2003)CrossRefGoogle Scholar
  108. 108.
    W.Z. Zhang, X.Z. Wu, M. Wang, Morphological, structural, and functional characterization of the haemocytes of the scallop, Argopecten irradians. Aquaculture 251, 19–32 (2006).  https://doi.org/10.1016/j.aquaculture.2005.05.020 CrossRefGoogle Scholar
  109. 109.
    C. Fleury et al., Shell repair process in the green ormer Haliotis tuberculata: a histological and microstructural study. Tissue Cell 40, 207–218 (2008).  https://doi.org/10.1016/j.tice.2007.12.002 CrossRefGoogle Scholar
  110. 110.
    J.A. Audino, J.E.A.R. Marian, A. Wanninger, S.G.B.C. Lopes, Mantle margin morphogenesis in Nodipecten nodosus (Mollusca: Bivalvia): new insights into the development and the roles of bivalve pallial folds. Bmc. Dev. Biol. 15 (2015). ARTN 221151186/s12861-015-0074-9Google Scholar
  111. 111.
    R. Jabbour-Zahab, D. Chagot, F. Blanc, H. Grizel, Mantle histology, histochemistry and ultrastructure of the pearl oyster Pinctada margaritifera (L.). Aquat. Living Resour. 5, 287–298 (1992)CrossRefGoogle Scholar
  112. 112.
    P. Southgate, J. Lucas (eds.), The pearl oyster (Elsevier, Oxford, 2011)Google Scholar
  113. 113.
    M.B. Johnstone et al., Cellular orchestrated biomineralization of crystalline composites on implant surfaces by the eastern oyster, Crassostrea virginica (Gmelin, 1791). J. Exp. Mar. Biol. Ecol. 463, 8–16 (2015).  https://doi.org/10.1016/j.jembe.2014.10.014 CrossRefGoogle Scholar
  114. 114.
    J.M. Myers, M.B. Johnstone, A.S. Mount, H. Silverman, A.P. Wheeler, TEM immunocytochemistry of a 48kDa MW organic matrix phosphoprotein produced in the mantle epithelial cells of the Eastern oyster (Crassostrea virginica). Tissue Cell 39, 247–256 (2007)CrossRefGoogle Scholar
  115. 115.
    S.-M. Cho, You-me lee, and woo-Geon Jeong. Effect of Polycyclic Aromatic Hydrocarbon (PAH) on shell repair in the Pacific oyster, Crassostrea gigas. Korean J. Malacol. 27(1), 35–42 (2011)CrossRefGoogle Scholar
  116. 116.
    B. Allam, C. Paillard, S.E. Ford, Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams. Dis. Aquat. Org. 48, 221–231 (2002).  https://doi.org/10.3354/dao048221 CrossRefGoogle Scholar
  117. 117.
    A. Ralph, D.C. Elston, P. Frelier, D. Lynn, Invasive orchitophryid ciliate infections in juvenile Pacific and Kumomoto oysters, Crassostrea gigas and Crassostrea sikamea. Aquaculture 174, 1–14 (1999)CrossRefGoogle Scholar
  118. 118.
    N. Vidavsky et al., Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. U. S. A. 111, 39–44 (2014).  https://doi.org/10.1073/pnas.1312833110 CrossRefGoogle Scholar
  119. 119.
    S. Weiner, L. Addadi, Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011).  https://doi.org/10.1146/annurev-matsci-062910-095803 CrossRefGoogle Scholar
  120. 120.
    C. Pan et al., A novel acidic matrix protein, PfN44, stabilizes magnesium calcite to inhibit the crystallization of aragonite. J. Biol. Chem. 289, 2776–2787 (2014).  https://doi.org/10.1074/jbc.M113.504027 CrossRefGoogle Scholar
  121. 121.
    Y. Li et al., DNA methylation is associated with expression level changes of galectin gene in mantle wound healing process of pearl oyster, Pinctada fucata. Fish Shellfish Immunol. 45, 912–918 (2015).  https://doi.org/10.1016/j.fsi.2015.06.016 CrossRefGoogle Scholar
  122. 122.
    M. De Zoysa et al., Allograft inflammatory factor-1 in disk abalone (Haliotis discus discus): molecular cloning, transcriptional regulation against immune challenge and tissue injury. Fish Shellfish Immunol. 29, 319–326 (2010).  https://doi.org/10.1016/j.fsi.2010.04.006 CrossRefGoogle Scholar
  123. 123.
    B. Peter, J. Armstrong, P. Q. Humoral immunity: a2 macroglobulin activity in the plasma of mollusks. Veliger S 35, 161–164 (1992)Google Scholar
  124. 124.
    M. Suzuki et al., An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325, 1388–1390 (2009).  https://doi.org/10.1126/science.1173793 CrossRefGoogle Scholar
  125. 125.
    H.L. Liu et al., Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry 46, 844–851 (2007).  https://doi.org/10.1021/bi061881a CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rongqing Zhang
    • 1
  • Liping Xie
    • 1
  • Zhenguang Yan
    • 2
  1. 1.School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.Chinese Research Academy of Environmental SciencesBeijingChina

Personalised recommendations